package core:math/rand

⌘K
Ctrl+K
or
/

    Types

    Default_Random_State ¶

    Default_Random_State :: runtime.Default_Random_State

    Generator ¶

    Generator :: runtime.Random_Generator

    Constants

    This section is empty.

    Variables

    This section is empty.

    Procedures

    choice ¶

    choice :: proc(array: $T/[]$T, gen := context.random_generator) -> (res: $T) {…}
     

    Returns a random element from the provided slice. If no generator is provided the global random number generator will be used.

    Inputs:
    array: The slice to choose an element from

    Returns:
    res: A random element from array

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    choice_example :: proc() {
    	data: [4]int = { 1, 2, 3, 4 }
    	fmt.println(rand.choice(data[:]))
    	fmt.println(rand.choice(data[:]))
    	fmt.println(rand.choice(data[:]))
    	fmt.println(rand.choice(data[:]))
    }
    
    Possible Output:
    3
    2
    2
    4
    

    choice_enum ¶

    choice_enum :: proc($T: typeid, gen := context.random_generator) -> typeid {…}

    create ¶

    create :: proc(seed: u64) -> (state: runtime.Default_Random_State) {…}

    exp_float64 ¶

    exp_float64 :: proc(gen := context.random_generator) -> f64 {…}
     

    exp_float64 returns a exponential distribution in the range (0, max(f64)], with an exponential distribution who rate parameter is 1 (lambda) and whose mean is 1 (1/lambda).

    To produce a distribution with a differetn rate parameter, divide the result by the desired rate parameter

    "The Ziggurat Method for Generating Random Variables" Authors: George Marsaglia, Wai Wan Tsang Submitted: 2000-04-15. Published: 2000-10-02. https://www.jstatsoft.org/index.php/jss/article/view/v005i08/ziggurat.pdf [pdf] https://www.jstatsoft.org/article/view/v005i08 [web page]

    float32 ¶

    float32 :: proc(gen := context.random_generator) -> (val: f32) {…}
     

    Generates a random single floating point value in the range [0, 1) using the provided random number generator. If no generator is provided the global random number generator will be used.

    Returns:
    val: A random single floating point value in the range [0, 1)

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    float32_example :: proc() {
    	fmt.println(rand.float32())
    }
    
    Possible Output:
    0.043
    0.511
    

    float32_beta ¶

    float32_beta :: proc(alpha, beta: f32, gen := context.random_generator) -> f32 {…}
     

    Beta Distribution

    Required: alpha > 0 and beta > 0

    Return values range between 0 and 1

    float32_cauchy_lorentz ¶

    float32_cauchy_lorentz :: proc(x_0, gamma: f32, gen := context.random_generator) -> f32 {…}
     

    Cauchy-Lorentz Distribution x_0 is the location, gamma is the scale where gamma > 0

    float32_exponential ¶

    float32_exponential :: proc(lambda: f32, gen := context.random_generator) -> f32 {…}
     

    Exponential Distribution lambda is 1.0/(desired mean). It should be non-zero. Return values range from 0 to positive infinity if lambda > 0 negative infinity to 0 if lambda <= 0

    float32_gamma ¶

    float32_gamma :: proc(alpha, beta: f32, gen := context.random_generator) -> f32 {…}
     

    Gamma Distribution (NOT THE GAMMA FUNCTION)

    Required: alpha > 0 and beta > 0

    math.pow(x, alpha-1) * math.exp(-x / beta) pdf(x) = -------------------------------------------- math.gamma(alpha) * math.pow(beta, alpha)

    mean is alphabeta, variance is math.pow(alphabeta, 2)

    float32_gompertz ¶

    float32_gompertz :: proc(eta, b: f32, gen := context.random_generator) -> f32 {…}
     

    Gompertz Distribution eta is the shape, b is the scale Both eta and b must be > 0

    float32_laplace ¶

    float32_laplace :: proc(mean, b: f32, gen := context.random_generator) -> f32 {…}
     

    Laplace Distribution b is the scale where b > 0

    float32_log_cauchy_lorentz ¶

    float32_log_cauchy_lorentz :: proc(x_0, gamma: f32, gen := context.random_generator) -> f32 {…}
     

    Log Cauchy-Lorentz Distribution x_0 is the location, gamma is the scale where gamma > 0

    float32_log_normal ¶

    float32_log_normal :: proc(mean, stddev: f32, gen := context.random_generator) -> f32 {…}
     

    Log Normal Distribution

    float32_normal ¶

    float32_normal :: proc(mean, stddev: f32, gen := context.random_generator) -> f32 {…}
     

    Normal/Gaussian Distribution

    float32_pareto ¶

    float32_pareto :: proc(alpha, beta: f32, gen := context.random_generator) -> f32 {…}
     

    Pareto distribution, alpha is the shape parameter. https://wikipedia.org/wiki/Pareto_distribution

    float32_range ¶

    float32_range :: proc(low, high: f32, gen := context.random_generator) -> (val: f32) {…}
     

    Generates a random single floating point value in the range [low, high) using the provided random number generator. If no generator is provided the global random number generator will be used.

    Inputs:
    low: The lower bounds of the value, this value is inclusive high: The upper bounds of the value, this value is exclusive

    Returns:
    val: A random single floating point value in the range [low, high)

    WARNING: Panics if high < low

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    float32_range_example :: proc() {
    	fmt.println(rand.float32_range(-10, 300))
    }
    
    Possible Output:
    15.312
    673.130
    

    float32_triangular ¶

    float32_triangular :: proc(lo, hi: f32, mode: runtime.Maybe($T=f32), gen := context.random_generator) -> f32 {…}
     

    Triangular Distribution See: http://wikipedia.org/wiki/Triangular_distribution

    float32_uniform ¶

    float32_uniform :: float32_range
     

    Generates a random single floating point value in the range [low, high) using the provided random number generator. If no generator is provided the global random number generator will be used.

    Inputs:
    low: The lower bounds of the value, this value is inclusive high: The upper bounds of the value, this value is exclusive

    Returns:
    val: A random single floating point value in the range [low, high)

    WARNING: Panics if high < low

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    float32_range_example :: proc() {
    	fmt.println(rand.float32_range(-10, 300))
    }
    
    Possible Output:
    15.312
    673.130
    

    float32_von_mises ¶

    float32_von_mises :: proc(mean_angle, kappa: f32, gen := context.random_generator) -> f32 {…}
     

    Circular Data (von Mises) Distribution mean_angle is the in mean angle between 0 and 2pi radians kappa is the concentration parameter which must be >= 0 When kappa is zero, the Distribution is a uniform Distribution over the range 0 to 2pi

    float32_weibull ¶

    float32_weibull :: proc(alpha, beta: f32, gen := context.random_generator) -> f32 {…}
     

    Weibull distribution, alpha is the scale parameter, beta is the shape parameter.

    float64 ¶

    float64 :: proc(gen := context.random_generator) -> (val: f64) {…}
     

    Generates a random double floating point value in the range [0, 1) using the provided random number generator. If no generator is provided the global random number generator will be used.

    Returns:
    val: A random double floating point value in the range [0, 1)

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    float64_example :: proc() {
    	fmt.println(rand.float64())
    }
    
    Possible Output:
    0.043
    0.511
    

    float64_beta ¶

    float64_beta :: proc(alpha, beta: f64, gen := context.random_generator) -> f64 {…}
     

    Beta Distribution

    Required: alpha > 0 and beta > 0

    Return values range between 0 and 1

    float64_cauchy_lorentz ¶

    float64_cauchy_lorentz :: proc(x_0, gamma: f64, gen := context.random_generator) -> f64 {…}
     

    Cauchy-Lorentz Distribution x_0 is the location, gamma is the scale where gamma > 0

    float64_exponential ¶

    float64_exponential :: proc(lambda: f64, gen := context.random_generator) -> f64 {…}
     

    Exponential Distribution lambda is 1.0/(desired mean). It should be non-zero. Return values range from 0 to positive infinity if lambda > 0 negative infinity to 0 if lambda <= 0

    float64_gamma ¶

    float64_gamma :: proc(alpha, beta: f64, gen := context.random_generator) -> f64 {…}
     

    Gamma Distribution (NOT THE GAMMA FUNCTION)

    Required: alpha > 0 and beta > 0

    math.pow(x, alpha-1) * math.exp(-x / beta) pdf(x) = -------------------------------------------- math.gamma(alpha) * math.pow(beta, alpha)

    mean is alphabeta, variance is math.pow(alphabeta, 2)

    float64_gompertz ¶

    float64_gompertz :: proc(eta, b: f64, gen := context.random_generator) -> f64 {…}
     

    Gompertz Distribution eta is the shape, b is the scale Both eta and b must be > 0

    float64_laplace ¶

    float64_laplace :: proc(mean, b: f64, gen := context.random_generator) -> f64 {…}
     

    Laplace Distribution b is the scale where b > 0

    float64_log_cauchy_lorentz ¶

    float64_log_cauchy_lorentz :: proc(x_0, gamma: f64, gen := context.random_generator) -> f64 {…}
     

    Log Cauchy-Lorentz Distribution x_0 is the location, gamma is the scale where gamma > 0

    float64_log_normal ¶

    float64_log_normal :: proc(mean, stddev: f64, gen := context.random_generator) -> f64 {…}
     

    Log Normal Distribution

    float64_normal ¶

    float64_normal :: proc(mean, stddev: f64, gen := context.random_generator) -> f64 {…}
     

    Normal/Gaussian Distribution

    float64_pareto ¶

    float64_pareto :: proc(alpha: f64, gen := context.random_generator) -> f64 {…}
     

    Pareto distribution, alpha is the shape parameter. https://wikipedia.org/wiki/Pareto_distribution

    float64_range ¶

    float64_range :: proc(low, high: f64, gen := context.random_generator) -> (val: f64) {…}
     

    Generates a random double floating point value in the range [low, high) using the provided random number generator. If no generator is provided the global random number generator will be used.

    WARNING: Panics if high < low

    Inputs:
    low: The lower bounds of the value, this value is inclusive high: The upper bounds of the value, this value is exclusive

    Returns:
    val: A random double floating point value in the range [low, high)

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    float64_range_example :: proc() {
    	fmt.println(rand.float64_range(-10, 300))
    }
    
    Possible Output:
    15.312
    673.130
    

    float64_triangular ¶

    float64_triangular :: proc(lo, hi: f64, mode: runtime.Maybe($T=f64), gen := context.random_generator) -> f64 {…}
     

    Triangular Distribution See: http://wikipedia.org/wiki/Triangular_distribution

    float64_uniform ¶

    float64_uniform :: float64_range
     

    Generates a random double floating point value in the range [low, high) using the provided random number generator. If no generator is provided the global random number generator will be used.

    WARNING: Panics if high < low

    Inputs:
    low: The lower bounds of the value, this value is inclusive high: The upper bounds of the value, this value is exclusive

    Returns:
    val: A random double floating point value in the range [low, high)

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    float64_range_example :: proc() {
    	fmt.println(rand.float64_range(-10, 300))
    }
    
    Possible Output:
    15.312
    673.130
    

    float64_von_mises ¶

    float64_von_mises :: proc(mean_angle, kappa: f64, gen := context.random_generator) -> f64 {…}
     

    Circular Data (von Mises) Distribution mean_angle is the in mean angle between 0 and 2pi radians kappa is the concentration parameter which must be >= 0 When kappa is zero, the Distribution is a uniform Distribution over the range 0 to 2pi

    float64_weibull ¶

    float64_weibull :: proc(alpha, beta: f64, gen := context.random_generator) -> f64 {…}
     

    Weibull distribution, alpha is the scale parameter, beta is the shape parameter.

    int127 ¶

    int127 :: proc(gen := context.random_generator) -> (val: i128) {…}
     

    Generates a random 127 bit value using the provided random number generator. If no generator is provided the global random number generator will be used.
    The sign bit will always be set to 0, thus all generated numbers will be positive.

    Returns:
    val: A random 127 bit value

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    int127_example :: proc() {
    	fmt.println(rand.int127())
    }
    
    Possible Output:
    10
    389
    

    int127_max ¶

    int127_max :: proc(n: i128, gen := context.random_generator) -> (val: i128) {…}
     

    Generates a random 127 bit value in the range [0, n) using the provided random number generator. If no generator is provided the global random number generator will be used.

    Inputs:
    n: The upper bound of the generated number, this value is exclusive

    Returns:
    val: A random 127 bit value in the range [0, n)

    WARNING: Panics if n is less than 0

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    int127_max_example :: proc() {
    	fmt.println(rand.int127_max(16))
    }
    
    Possible Output:
    6
    500
    

    int31 ¶

    int31 :: proc(gen := context.random_generator) -> (val: i32) {…}
     

    Generates a random 31 bit value using the provided random number generator. If no generator is provided the global random number generator will be used.
    The sign bit will always be set to 0, thus all generated numbers will be positive.

    Returns:
    val: A random 31 bit value

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    int31_example :: proc() {
    	fmt.println(rand.int31())
    }
    
    Possible Output:
    10
    389
    

    int31_max ¶

    int31_max :: proc(n: i32, gen := context.random_generator) -> (val: i32) {…}
     

    Generates a random 31 bit value in the range [0, n) using the provided random number generator. If no generator is provided the global random number generator will be used.

    Inputs:
    n: The upper bound of the generated number, this value is exclusive

    Returns:
    val: A random 31 bit value in the range [0, n)

    WARNING: Panics if n is less than 0

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    int31_max_example :: proc() {
    	fmt.println(rand.int31_max(16))
    }
    
    Possible Output:
    6
    500
    

    int63 ¶

    int63 :: proc(gen := context.random_generator) -> (val: i64) {…}
     

    Generates a random 63 bit value using the provided random number generator. If no generator is provided the global random number generator will be used.
    The sign bit will always be set to 0, thus all generated numbers will be positive.

    Returns:
    val: A random 63 bit value

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    int63_example :: proc() {
    	fmt.println(rand.int63())
    }
    
    Possible Output:
    10
    389
    

    int63_max ¶

    int63_max :: proc(n: i64, gen := context.random_generator) -> (val: i64) {…}
     

    Generates a random 63 bit value in the range [0, n) using the provided random number generator. If no generator is provided the global random number generator will be used.

    Inputs:
    n: The upper bound of the generated number, this value is exclusive

    Returns:
    val: A random 63 bit value in the range [0, n)

    WARNING: Panics if n is less than 0

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    int63_max_example :: proc() {
    	fmt.println(rand.int63_max(16))
    }
    
    Possible Output:
    6
    500
    

    int_max ¶

    int_max :: proc(n: int, gen := context.random_generator) -> (val: int) {…}
     

    Generates a random integer value in the range [0, n) using the provided random number generator. If no generator is provided the global random number generator will be used.

    Inputs:
    n: The upper bound of the generated number, this value is exclusive

    Returns:
    val: A random integer value in the range [0, n)

    WARNING: Panics if n is less than 0

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    int_max_example :: proc() {
    	fmt.println(rand.int_max(16))
    }
    
    Possible Output:
    6
    500
    

    norm_float64 ¶

    norm_float64 :: proc(gen := context.random_generator) -> f64 {…}
     

    norm_float64 returns a normally distributed f64 in the range -max(f64) through +max(f64) inclusive, with a standard normal distribution with a mean of 0 and standard deviation of 1.

    sample = norm_float64() * std_dev + mean

    Normal distribution

    "The Ziggurat Method for Generating Random Variables" Authors: George Marsaglia, Wai Wan Tsang Submitted: 2000-04-15. Published: 2000-10-02. https://www.jstatsoft.org/index.php/jss/article/view/v005i08/ziggurat.pdf [pdf] https://www.jstatsoft.org/article/view/v005i08 [web page]

    perm ¶

    perm :: proc(n: int, allocator := context.allocator, gen := context.random_generator) -> (res: []int, err: runtime.Allocator_Error) #optional_ok {…}
     

    Creates a slice of int filled with random values using the provided random number generator. If no generator is provided the global random number generator will be used.

    Allocates Using Provided Allocator

    Inputs:
    n: The size of the created slice allocator: (default: context.allocator)

    Returns:
    res: A slice filled with random values err: An allocator error if one occured, nil otherwise

    Example:
    import "core:math/rand"
    import "core:mem"
    import "core:fmt"
    
    perm_example :: proc() -> (err: mem.Allocator_Error) {
    	data := rand.perm(4) or_return
    	fmt.println(data)
    	defer delete(data, context.allocator)
    
    	return
    }
    
    Possible Output:
    [7201011, 3, 9123, 231131]
    [19578, 910081, 131, 7]
    

    query_info ¶

    query_info :: proc(gen := context.random_generator) -> runtime.Random_Generator_Query_Info {…}

    read ¶

    read :: proc(p: []u8, gen := context.random_generator) -> (n: int) {…}
     

    Fills a byte slice with random values using the provided random number generator. If no generator is provided the global random number generator will be used.
    Due to floating point precision there is no guarantee if the upper and lower bounds are inclusive/exclusive with the exact floating point value.

    Inputs:
    p: The byte slice to fill

    Returns:
    n: The number of bytes generated

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    read_example :: proc() {
    	data: [8]byte
    	n := rand.read(data[:])
    	fmt.println(n)
    	fmt.println(data)
    }
    
    Possible Output:
    8
    [32, 4, 59, 7, 1, 2, 2, 119]
    

    reset ¶

    reset :: proc(seed: u64, gen := context.random_generator) {…}
     

    Reset the seed used by the context.random_generator.

    Inputs:
    seed: The seed value

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    set_global_seed_example :: proc() {
    	rand.reset(1)
    	fmt.println(rand.uint64())
    }
    
    Possible Output:
    10
    

    reset_bytes ¶

    reset_bytes :: proc(bytes: []u8, gen := context.random_generator) {…}

    set_global_seed ¶

    set_global_seed :: proc(seed: u64) {…}
     

    Reset the seed used by the context.random_generator.

    Inputs:
    seed: The seed value

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    set_global_seed_example :: proc() {
    	rand.set_global_seed(1)
    	fmt.println(rand.uint64())
    }
    
    Possible Output:
    10
    

    shuffle ¶

    shuffle :: proc(array: $T/[]$T, gen := context.random_generator) {…}
     

    Randomizes the ordering of elements for the provided slice. If no generator is provided the global random number generator will be used.

    Inputs:
    array: The slice to randomize

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    shuffle_example :: proc() {
    	data: [4]int = { 1, 2, 3, 4 }
    	fmt.println(data) // the contents are in order
    	rand.shuffle(data[:])
    	fmt.println(data) // the contents have been shuffled
    }
    
    Possible Output:
    [1, 2, 3, 4]
    [2, 4, 3, 1]
    

    uint128 ¶

    uint128 :: proc(gen := context.random_generator) -> (val: u128) {…}
     

    Generates a random 128 bit value using the provided random number generator. If no generator is provided the global random number generator will be used.

    Returns:
    val: A random unsigned 128 bit value

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    uint128_example :: proc() {
    	fmt.println(rand.uint128())
    }
    
    Possible Output:
    10
    389
    

    uint32 ¶

    uint32 :: proc(gen := context.random_generator) -> (val: u32) {…}
     

    Generates a random 32 bit value using the provided random number generator. If no generator is provided the global random number generator will be used.

    Returns:
    val: A random unsigned 32 bit value

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    uint32_example :: proc() {
    	fmt.println(rand.uint32())
    }
    
    Possible Output:
    10
    389
    

    uint64 ¶

    uint64 :: proc(gen := context.random_generator) -> (val: u64) {…}
     

    Generates a random 64 bit value using the provided random number generator. If no generator is provided the global random number generator will be used.

    Returns:
    val: A random unsigned 64 bit value

    Example:
    import "core:math/rand"
    import "core:fmt"
    
    uint64_example :: proc() {
    	fmt.println(rand.uint64())
    }
    
    Possible Output:
    10
    389
    

    Procedure Groups

    This section is empty.

    Source Files

    Generation Information

    Generated with odin version dev-2024-09 (vendor "odin") Windows_amd64 @ 2024-09-17 21:11:34.551459900 +0000 UTC