package core:math/big

⌘K
Ctrl+K
or
/

    Overview

    Arbitrary precision integers and rationals.

    Index

    Procedures (318)
    Procedure Groups (188)

    Types

    DIGIT ¶

    DIGIT :: distinct u64
     

    We can use u128 as an intermediary.

    Related Procedures With Parameters
    Related Procedures With Returns

    Endianness ¶

    Endianness :: enum i8 {
    	Little   = -1, 
    	Platform = 0, 
    	Big      = 1, 
    }

    Error ¶

    Error :: enum int {
    	Okay                    = 0, 
    	Out_Of_Memory           = 1, 
    	Invalid_Pointer         = 2, 
    	Invalid_Argument        = 3, 
    	Assignment_To_Immutable = 10, 
    	Max_Iterations_Reached  = 11, 
    	Buffer_Overflow         = 12, 
    	Integer_Overflow        = 13, 
    	Integer_Underflow       = 14, 
    	Division_by_Zero        = 30, 
    	Math_Domain_Error       = 31, 
    	Cannot_Open_File        = 50, 
    	Cannot_Read_File        = 51, 
    	Cannot_Write_File       = 52, 
    	Unimplemented           = 127, 
    }
     

    Errors are a strict superset of runtime.Allocation_Error.

    Related Procedures With Returns

    Flag ¶

    Flag :: enum u8 {
    	NaN, 
    	Inf, 
    	Immutable, 
    }

    Flags ¶

    Flags :: bit_set[Flag; u8]

    Int ¶

    Int :: struct {
    	used:  int,
    	digit: [dynamic]DIGIT,
    	sign:  Sign,
    	flags: bit_set[Flag; u8],
    }
    Related Procedures With Parameters

    Order ¶

    Order :: enum i8 {
    	LSB_First = -1, 
    	MSB_First = 1, 
    }
    Related Procedures With Parameters

    Primality_Flag ¶

    Primality_Flag :: enum u8 {
    	Blum_Blum_Shub = 0, // Make prime congruent to 3 mod 4
    	Safe           = 1, // Make sure (p-1)/2 is prime as well (implies .Blum_Blum_Shub)
    	Second_MSB_On  = 3, // Make the 2nd highest bit one
    }

    Primality_Flags ¶

    Primality_Flags :: bit_set[Primality_Flag; u8]
    Related Procedures With Parameters

    Rat ¶

    Rat :: struct {
    	a: Int,
    	b: Int,
    }
    Related Procedures With Parameters

    Sign ¶

    Sign :: enum u8 {
    	Zero_or_Positive = 0, 
    	Negative         = 1, 
    }
    Related Procedures With Returns

    Constants

    Error_String ¶

    Error_String: [Error]string : #sparse[Error]string{.Okay = "Okay", .Out_Of_Memory = "Out of memory", .Invalid_Pointer = "Invalid pointer", .Invalid_Argument = "Invalid argument", .Assignment_To_Immutable = "Assignment to immutable", .Max_Iterations_Reached = "Max iterations reached", .Buffer_Overflow = "Buffer overflow", .Integer_Overflow = "Integer overflow", .Integer_Underflow = "Integer underflow", .Division_by_Zero = "Division by zero", .Math_Domain_Error = "Math domain error", .Cannot_Open_File = "Cannot_Open_File", .Cannot_Read_File = "Cannot_Read_File", .Cannot_Write_File = "Cannot_Write_File", .Unimplemented = "Unimplemented"}

    MATH_BIG_FORCE_32_BIT ¶

    MATH_BIG_FORCE_32_BIT: bool : #config(MATH_BIG_FORCE_32_BIT, false)

    MATH_BIG_FORCE_64_BIT ¶

    MATH_BIG_FORCE_64_BIT: bool : #config(MATH_BIG_FORCE_64_BIT, false)
     

    We don't allow these to be switched at runtime for two reasons:

    1) 32-bit and 64-bit versions of procedures use different types for their storage,

    so we'd have to double the number of procedures, and they couldn't interact.
    
    

    2) Optimizations thanks to precomputed masks wouldn't work.

    MATH_BIG_USE_FROBENIUS_TEST ¶

    MATH_BIG_USE_FROBENIUS_TEST: bool : !MATH_BIG_USE_LUCAS_SELFRIDGE_TEST

    MATH_BIG_USE_LUCAS_SELFRIDGE_TEST ¶

    MATH_BIG_USE_LUCAS_SELFRIDGE_TEST: bool : #config(MATH_BIG_USE_LUCAS_SELFRIDGE_TEST, false)
     

    internal_int_is_prime switchables.

    Use Frobenius-Underwood for primality testing, or use Lucas-Selfridge (default).

    RADIX_TABLE_REVERSE_SIZE ¶

    RADIX_TABLE_REVERSE_SIZE: int : 80

    Variables

    FACTORIAL_BINARY_SPLIT_CUTOFF ¶

    FACTORIAL_BINARY_SPLIT_CUTOFF: int = …
     

    Cutoff to switch to int_factorial_binary_split, and its max recursion level.

    FACTORIAL_BINARY_SPLIT_MAX_RECURSIONS ¶

    FACTORIAL_BINARY_SPLIT_MAX_RECURSIONS: int = …

    FACTORIAL_MAX_N ¶

    FACTORIAL_MAX_N: int = …
     

    Largest N for which we'll compute N!

    INT_INF ¶

    INT_INF: ^Int = …
     

    Initialize constants.

    INT_MINUS_INF ¶

    INT_MINUS_INF: ^Int = …
     

    Initialize constants.

    INT_MINUS_ONE ¶

    INT_MINUS_ONE: ^Int = …
     

    Initialize constants.

    INT_NAN ¶

    INT_NAN: ^Int = …
     

    Initialize constants.

    INT_ONE ¶

    INT_ONE: ^Int = …
     

    Initialize constants.

    INT_ZERO ¶

    INT_ZERO: ^Int = …
     

    Initialize constants.

    MAX_ITERATIONS_RANDOM_PRIME ¶

    MAX_ITERATIONS_RANDOM_PRIME: int = …
     

    How many times we'll call internal_int_random during random prime generation before we bail out. Set to 0 or less to try indefinitely.

    MAX_ITERATIONS_ROOT_N ¶

    MAX_ITERATIONS_ROOT_N: int = …

    MUL_KARATSUBA_CUTOFF ¶

    MUL_KARATSUBA_CUTOFF: int = …

    MUL_TOOM_CUTOFF ¶

    MUL_TOOM_CUTOFF: int = …

    RADIX_TABLE ¶

    RADIX_TABLE: string = …
     

    Characters used in radix conversions.

    RADIX_TABLE_REVERSE ¶

    RADIX_TABLE_REVERSE: [80]u8 = …

    RANDOM_PRIME_ITERATIONS_USED ¶

    @(thread_local)
    RANDOM_PRIME_ITERATIONS_USED: int
     

    How many iterations we used for the last random prime.

    SQR_KARATSUBA_CUTOFF ¶

    SQR_KARATSUBA_CUTOFF: int = …

    SQR_TOOM_CUTOFF ¶

    SQR_TOOM_CUTOFF: int = …

    USE_MILLER_RABIN_ONLY ¶

    USE_MILLER_RABIN_ONLY: bool = …
     

    Runtime tunable to use Miller-Rabin primality testing only and skip the above.

    Procedures

    assert_if_nil_int ¶

    assert_if_nil_int :: proc(.. integers: ..^Int, loc := #caller_location) {…}
    Related Procedure Groups

    assert_if_nil_rat ¶

    assert_if_nil_rat :: proc(.. rationals: ..^Rat, loc := #caller_location) {…}
    Related Procedure Groups

    assert_initialized ¶

    assert_initialized :: proc(a: ^Int, loc := #caller_location) {…}
     

    Internal helpers.

    clamp ¶

    clamp :: proc(a: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Trim unused digits.

    This is used to ensure that leading zero digits are trimmed and the leading "used" digit will be non-zero. Typically very fast. Also fixes the sign if there are no more leading digits.

    clear_if_uninitialized_multi ¶

    clear_if_uninitialized_multi :: proc(.. args: ..^Int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    clear_if_uninitialized_single ¶

    clear_if_uninitialized_single :: proc(arg: ^Int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    combinations_with_repetition ¶

    combinations_with_repetition :: proc(dest: ^Int, n, r: int) -> (error: Error) {…}
     

    With n items, calculate how many ways that r of them can be chosen.

    Also known as the multiset coefficient or (n multichoose k).

    combinations_without_repetition ¶

    combinations_without_repetition :: proc(dest: ^Int, n, r: int) -> (error: Error) {…}
     

    With n items, calculate how many ways that r of them can be chosen without any repeats.

    Also known as the binomial coefficient or (n choose k).

    copy_digits ¶

    copy_digits :: proc(dest, src: ^Int, digits: int, offset: int = int(0), allocator := context.allocator) -> (err: Error) {…}

    count_bits ¶

    count_bits :: proc(a: ^Int, allocator := context.allocator) -> (count: int, err: Error) {…}
     

    Count bits in an Int.

    digit_log ¶

    digit_log :: proc(a: DIGIT, base: DIGIT) -> (log: int, err: Error) {…}
    Related Procedure Groups

    error_if_immutable_multi ¶

    error_if_immutable_multi :: proc(.. args: ..^Int) -> (err: Error) {…}
    Related Procedure Groups

    error_if_immutable_single ¶

    error_if_immutable_single :: proc(arg: ^Int) -> (err: Error) {…}
    Related Procedure Groups

    ilog2 ¶

    ilog2 :: proc(value: $T) -> (log2: $T) {…}

    int_abs ¶

    int_abs :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Set dest to |src|.

    Related Procedure Groups

    int_add ¶

    int_add :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    High-level addition. Handles sign.

    Related Procedure Groups

    int_add_digit ¶

    int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {…}
     

    Adds the unsigned DIGIT immediate to an Int, such that the DIGIT doesn't have to be turned into an Int first.

    dest = a + digit;

    Related Procedure Groups

    int_add_rat ¶

    int_add_rat :: proc(dst: ^Rat, x: ^Int, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    int_addmod ¶

    int_addmod :: proc(remainder, number, addend, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number + addend) % modulus.

    Related Procedure Groups

    int_atoi ¶

    int_atoi :: proc(res: ^Int, input: string, radix: i8 = i8(10), allocator := context.allocator) -> (err: Error) {…}
     

    Read a string [ASCII] in a given radix.

    Related Procedure Groups

    int_bit_and ¶

    int_bit_and :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    2's complement and, returns dest = a & b;

    Related Procedure Groups

    int_bit_complement ¶

    int_bit_complement :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    dest = ~src

    Related Procedure Groups

    int_bit_or ¶

    int_bit_or :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    2's complement or, returns dest = a | b;

    Related Procedure Groups

    int_bit_xor ¶

    int_bit_xor :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    2's complement xor, returns dest = a ^ b;

    Related Procedure Groups

    int_bitfield_extract ¶

    int_bitfield_extract :: proc(a: ^Int, offset, count: int, allocator := context.allocator) -> (res: _WORD, err: Error) {…}

    int_bitfield_extract_single ¶

    int_bitfield_extract_single :: proc(a: ^Int, offset: int, allocator := context.allocator) -> (bit: _WORD, err: Error) {…}
     

    Helpers to extract values from the Int.

    int_choose_digit ¶

    int_choose_digit :: proc(res: ^Int, n, k: int, allocator := context.allocator) -> (err: Error) {…}
     

    Number of ways to choose k items from n items. Also known as the binomial coefficient.

    TODO: Speed up.

    Could be done faster by reusing code from factorial and reusing the common "prefix" results for n!, k! and n-k! We know that n >= k, otherwise we early out with res = 0.

    So:

    n-k, keep result
    n, start from previous result
    k, start from previous result
    
    Related Procedure Groups

    int_clear ¶

    int_clear :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Clear Int and resize it to the default size.

    Related Procedure Groups

    int_cmp ¶

    int_cmp :: int_compare
     

    Compare two Ints, signed.

    Related Procedure Groups

    int_cmp_digit ¶

    int_cmp_digit :: int_compare_digit
     

    Compare an Int to an unsigned number upto the size of the backing type.

    Related Procedure Groups

    int_cmp_mag ¶

    int_cmp_mag :: int_compare_magnitude
     

    Compare the magnitude of two Ints, unsigned.

    Related Procedure Groups

    int_compare ¶

    int_compare :: proc(a, b: ^Int, allocator := context.allocator) -> (comparison: int, err: Error) {…}
     

    Compare two Ints, signed.

    Related Procedure Groups

    int_compare_digit ¶

    int_compare_digit :: proc(a: ^Int, b: DIGIT, allocator := context.allocator) -> (comparison: int, err: Error) {…}
     

    Compare an Int to an unsigned number upto the size of the backing type.

    Related Procedure Groups

    int_compare_magnitude ¶

    int_compare_magnitude :: proc(a, b: ^Int, allocator := context.allocator) -> (res: int, err: Error) {…}
     

    Compare the magnitude of two Ints, unsigned.

    Related Procedure Groups

    int_copy ¶

    int_copy :: proc(dest, src: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Copy one Int to another.

    Related Procedure Groups

    int_count_lsb ¶

    int_count_lsb :: proc(a: ^Int, allocator := context.allocator) -> (count: int, err: Error) {…}
     

    Returns the number of trailing zeroes before the first one. Differs from regular ctz in that 0 returns 0.

    Related Procedure Groups

    int_destroy ¶

    int_destroy :: proc(.. integers: ..^Int) {…}
     

    Deallocates the backing memory of one or more Ints.

    Related Procedure Groups

    int_div ¶

    int_div :: proc(quotient, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    int_div_digit ¶

    int_div_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    int_div_rat ¶

    int_div_rat :: proc(dst: ^Rat, x: ^Int, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    int_divmod ¶

    int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    divmod. Both the quotient and remainder are optional and may be passed a nil.

    Related Procedure Groups

    int_divmod_digit ¶

    int_divmod_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {…}
    Related Procedure Groups

    int_double ¶

    int_double :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    dest = src * 2 dest = src << 1

    Related Procedure Groups

    int_equals ¶

    int_equals :: proc(a, b: ^Int, allocator := context.allocator) -> (equals: bool, err: Error) {…}
     

    bool := a == b

    Related Procedure Groups

    int_equals_abs ¶

    int_equals_abs :: proc(a, b: ^Int, allocator := context.allocator) -> (equals: bool, err: Error) {…}
     
    bool := |a| == |b|
    

    Compares the magnitudes only, ignores the sign.

    Related Procedure Groups

    int_equals_digit ¶

    int_equals_digit :: proc(a: ^Int, b: DIGIT, allocator := context.allocator) -> (equals: bool, err: Error) {…}
     

    bool := a == b

    Related Procedure Groups

    int_factorial ¶

    int_factorial :: proc(res: ^Int, n: int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    int_from_bytes_big ¶

    int_from_bytes_big :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Read Int from a Big Endian binary representation. Sign is detected from the first byte if signed is true.

    int_from_bytes_big_python ¶

    int_from_bytes_big_python :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Read Int from a Big Endian Python binary representation. Sign is detected from the first byte if signed is true.

    int_from_bytes_little ¶

    int_from_bytes_little :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Read Int from a Little Endian binary representation. Sign is detected from the last byte if signed is true.

    int_from_bytes_little_python ¶

    int_from_bytes_little_python :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Read Int from a Little Endian Python binary representation. Sign is detected from the first byte if signed is true.

    int_gcd ¶

    int_gcd :: proc(res, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Greatest Common Divisor.

    Related Procedure Groups

    int_gcd_lcm ¶

    int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Function computing both GCD and (if target isn't nil) also LCM.

    Related Procedure Groups

    int_get ¶

    int_get :: proc(a: ^Int, $T: typeid, allocator := context.allocator) -> (res: typeid, err: Error) {…}
     

    TODO: Think about using count_bits to check if the value could be returned completely, and maybe return max(T), .Integer_Overflow if not?

    Related Procedure Groups

    int_get_float ¶

    int_get_float :: proc(a: ^Int, allocator := context.allocator) -> (res: f64, err: Error) {…}

    int_get_i128 ¶

    int_get_i128 :: proc(a: ^Int, allocator := context.allocator) -> (res: i128, err: Error) {…}
    Related Procedure Groups

    int_get_i32 ¶

    int_get_i32 :: proc(a: ^Int, allocator := context.allocator) -> (res: i32, err: Error) {…}
    Related Procedure Groups

    int_get_i64 ¶

    int_get_i64 :: proc(a: ^Int, allocator := context.allocator) -> (res: i64, err: Error) {…}
    Related Procedure Groups

    int_get_u128 ¶

    int_get_u128 :: proc(a: ^Int, allocator := context.allocator) -> (res: u128, err: Error) {…}
    Related Procedure Groups

    int_get_u32 ¶

    int_get_u32 :: proc(a: ^Int, allocator := context.allocator) -> (res: u32, err: Error) {…}
    Related Procedure Groups

    int_get_u64 ¶

    int_get_u64 :: proc(a: ^Int, allocator := context.allocator) -> (res: u64, err: Error) {…}
    Related Procedure Groups

    int_greater_than ¶

    int_greater_than :: proc(a, b: ^Int, allocator := context.allocator) -> (greater_than: bool, err: Error) {…}
     

    bool := a > b

    Related Procedure Groups

    int_greater_than_abs ¶

    int_greater_than_abs :: proc(a, b: ^Int, allocator := context.allocator) -> (greater_than: bool, err: Error) {…}
     
    bool := |a| > |b|
    

    Compares the magnitudes only, ignores the sign.

    Related Procedure Groups

    int_greater_than_digit ¶

    int_greater_than_digit :: proc(a: ^Int, b: DIGIT, allocator := context.allocator) -> (greater_than: bool, err: Error) {…}
     

    bool := a > b

    Related Procedure Groups

    int_greater_than_or_equal ¶

    int_greater_than_or_equal :: proc(a, b: ^Int, allocator := context.allocator) -> (greater_than_or_equal: bool, err: Error) {…}
     

    bool := a >= b

    Related Procedure Groups

    int_greater_than_or_equal_abs ¶

    int_greater_than_or_equal_abs :: proc(a, b: ^Int, allocator := context.allocator) -> (greater_than_or_equal: bool, err: Error) {…}
     
    bool := |a| >= |b|
    

    Compares the magnitudes only, ignores the sign.

    Related Procedure Groups

    int_greater_than_or_equal_digit ¶

    int_greater_than_or_equal_digit :: proc(a: ^Int, b: DIGIT, allocator := context.allocator) -> (greater_than_or_equal: bool, err: Error) {…}
     

    bool := a >= b

    Related Procedure Groups

    int_grow ¶

    int_grow :: proc(a: ^Int, digits: int, allow_shrink: bool = false, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    int_halve ¶

    int_halve :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    dest = src / 2 dest = src >> 1

    Related Procedure Groups

    int_inf ¶

    int_inf :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to Inf and optionally shrink it to the minimum backing size.

    Related Procedure Groups

    int_init_multi ¶

    int_init_multi :: proc(.. integers: ..^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Allocates several Ints at once.

    Related Procedure Groups

    int_is_even ¶

    int_is_even :: proc(a: ^Int, allocator := context.allocator) -> (even: bool, err: Error) {…}
    Related Procedure Groups

    int_is_initialized ¶

    int_is_initialized :: proc(a: ^Int) -> bool {…}
    Related Procedure Groups

    int_is_negative ¶

    int_is_negative :: proc(a: ^Int, allocator := context.allocator) -> (negative: bool, err: Error) {…}
    Related Procedure Groups

    int_is_odd ¶

    int_is_odd :: proc(a: ^Int, allocator := context.allocator) -> (odd: bool, err: Error) {…}
    Related Procedure Groups

    int_is_positive ¶

    int_is_positive :: proc(a: ^Int, allocator := context.allocator) -> (positive: bool, err: Error) {…}
    Related Procedure Groups

    int_is_power_of_two ¶

    int_is_power_of_two :: proc(a: ^Int, allocator := context.allocator) -> (res: bool, err: Error) {…}
    Related Procedure Groups

    int_is_square ¶

    int_is_square :: proc(a: ^Int, allocator := context.allocator) -> (square: bool, err: Error) {…}
     

    Check if remainders are possible squares - fast exclude non-squares.

    Returns true if a is a square, false if not. Assumes a not to be nil and to have been initialized.

    int_is_zero ¶

    int_is_zero :: proc(a: ^Int, allocator := context.allocator) -> (zero: bool, err: Error) {…}
    Related Procedure Groups

    int_itoa_cstring ¶

    int_itoa_cstring :: proc(a: ^Int, radix: i8 = i8(10), allocator := context.allocator) -> (res: cstring, err: Error) {…}
     

    This version of itoa allocates on behalf of the caller. The caller must free the string. The radix defaults to 10.

    int_itoa_raw ¶

    int_itoa_raw :: proc(a: ^Int, radix: i8, buffer: []u8, size: int = int(-1), zero_terminate: bool = false) -> (written: int, err: Error) {…}
     

    A low-level itoa using a caller-provided buffer. itoa_string and itoa_cstring use this. You can use also use it if you want to pre-allocate a buffer and optionally reuse it.

    Use radix_size or radix_size_estimate to determine a buffer size big enough.

    You can pass the output of radix_size to size if you've previously called it to size the output buffer. If you haven't, this routine will call it. This way it knows if the buffer is the appropriate size, and we can write directly in place without a reverse step at the end.

    			=== === === IMPORTANT === === ===
    
    

    If you determined the buffer size using radix_size_estimate, or have a buffer that you reuse that you know is large enough, don't pass this size unless you know what you are doing, because we will always write backwards starting at last byte of the buffer.

    Keep in mind that if you set size yourself and it's smaller than the buffer, it'll result in buffer overflows, as we use it to avoid reversing at the end and having to perform a buffer overflow check each character.

    Related Procedure Groups

    int_itoa_string ¶

    int_itoa_string :: proc(a: ^Int, radix: i8 = i8(10), zero_terminate: bool = false, allocator := context.allocator) -> (res: string, err: Error) {…}
     

    This version of itoa allocates on behalf of the caller. The caller must free the string. The radix defaults to 10.

    Related Procedure Groups

    int_lcm ¶

    int_lcm :: proc(res, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Least Common Multiple.

    Related Procedure Groups

    int_less_than ¶

    int_less_than :: proc(a, b: ^Int, allocator := context.allocator) -> (less_than: bool, err: Error) {…}
     

    bool := a < b

    Related Procedure Groups

    int_less_than_abs ¶

    int_less_than_abs :: proc(a, b: ^Int, allocator := context.allocator) -> (less_than: bool, err: Error) {…}
     
    bool := |a| < |b|
    

    Compares the magnitudes only, ignores the sign.

    Related Procedure Groups

    int_less_than_digit ¶

    int_less_than_digit :: proc(a: ^Int, b: DIGIT, allocator := context.allocator) -> (less_than: bool, err: Error) {…}
     

    bool := a < b

    Related Procedure Groups

    int_less_than_or_equal ¶

    int_less_than_or_equal :: proc(a, b: ^Int, allocator := context.allocator) -> (less_than_or_equal: bool, err: Error) {…}
     

    bool := a <= b

    Related Procedure Groups

    int_less_than_or_equal_abs ¶

    int_less_than_or_equal_abs :: proc(a, b: ^Int, allocator := context.allocator) -> (less_than_or_equal: bool, err: Error) {…}
     
    bool := |a| <= |b|
    

    Compares the magnitudes only, ignores the sign.

    Related Procedure Groups

    int_less_than_or_equal_digit ¶

    int_less_than_or_equal_digit :: proc(a: ^Int, b: DIGIT, allocator := context.allocator) -> (less_than_or_equal: bool, err: Error) {…}
     

    bool := a <= b

    Related Procedure Groups

    int_log ¶

    int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -> (res: int, err: Error) {…}
     

    Logs and roots and such.

    Related Procedure Groups

    int_minus_inf ¶

    int_minus_inf :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to -Inf and optionally shrink it to the minimum backing size.

    int_minus_one ¶

    int_minus_one :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to -1 and optionally shrink it to the minimum backing size.

    Related Procedure Groups

    int_mod ¶

    int_mod :: proc(remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = numerator % denominator. 0 <= remainder < denominator if denominator > 0 denominator < remainder <= 0 if denominator < 0

    Related Procedure Groups

    int_mod_bits ¶

    int_mod_bits :: proc(remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = numerator % (1 << bits)

    Related Procedure Groups

    int_mod_digit ¶

    int_mod_digit :: proc(numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {…}
    Related Procedure Groups

    int_mul ¶

    int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    High level multiplication (handles sign).

    Related Procedure Groups

    int_mul_digit ¶

    int_mul_digit :: proc(dest, src: ^Int, multiplier: DIGIT, allocator := context.allocator) -> (err: Error) {…}
     

    Multiply by a DIGIT.

    Related Procedure Groups

    int_mul_rat ¶

    int_mul_rat :: proc(dst: ^Rat, x: ^Int, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    int_mulmod ¶

    int_mulmod :: proc(remainder, number, multiplicand, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number * multiplicand) % modulus.

    Related Procedure Groups

    int_nan ¶

    int_nan :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to NaN and optionally shrink it to the minimum backing size.

    Related Procedure Groups

    int_neg ¶

    int_neg :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Set dest to -src.

    Related Procedure Groups

    int_one ¶

    int_one :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to 1 and optionally shrink it to the minimum backing size.

    Related Procedure Groups

    int_pow ¶

    int_pow :: proc(dest, base: ^Int, power: int, allocator := context.allocator) -> (err: Error) {…}
     

    Calculate dest = base^power using a square-multiply algorithm.

    Related Procedure Groups

    int_pow_int ¶

    int_pow_int :: proc(dest: ^Int, base, power: int, allocator := context.allocator) -> (err: Error) {…}
     

    Calculate dest = base^power using a square-multiply algorithm.

    Related Procedure Groups

    int_random ¶

    int_random :: proc(dest: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    int_random_digit ¶

    int_random_digit :: proc() -> (res: DIGIT) {…}

    int_root_n ¶

    int_root_n :: proc(dest, src: ^Int, n: int, allocator := context.allocator) -> (err: Error) {…}
     

    Find the nth root of an Integer. Result found such that (dest)**n <= src and (dest+1)**n > src

    This algorithm uses Newton's approximation x[i+1] = x[i] - f(x[i])/f'(x[i]), which will find the root in log(n) time where each step involves a fair bit.

    Related Procedure Groups

    int_set_from_integer ¶

    int_set_from_integer :: proc(dest: ^Int, src: $T, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Helpers to set an Int to a specific value.

    Related Procedure Groups

    int_shl ¶

    int_shl :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    Shift left by a certain bit count.

    Related Procedure Groups

    int_shr ¶

    int_shr :: proc(dest, source: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    int_shr_signed ¶

    int_shr_signed :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    Shift right by a certain bit count with sign extension.

    Related Procedure Groups

    int_shrmod ¶

    int_shrmod :: proc(quotient, remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    quotient, remainder := numerator >> bits; remainder is allowed to be passed a nil, in which case mod won't be computed.

    Related Procedure Groups

    int_sqr ¶

    int_sqr :: proc(dest, src: ^Int) -> (err: Error) {…}
    Related Procedure Groups

    int_sqrmod ¶

    int_sqrmod :: proc(remainder, number, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number * number) % modulus.

    Related Procedure Groups

    int_sqrt ¶

    int_sqrt :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    This function is less generic than root_n, simpler and faster.

    Related Procedure Groups

    int_sub ¶

    int_sub :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    High-level subtraction, dest = number - decrease. Handles signs.

    Related Procedure Groups

    int_sub_digit ¶

    int_sub_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {…}
     

    Adds the unsigned DIGIT immediate to an Int, such that the DIGIT doesn't have to be turned into an Int first.

    dest = a - digit;

    Related Procedure Groups

    int_sub_rat ¶

    int_sub_rat :: proc(dst: ^Rat, x: ^Int, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    int_submod ¶

    int_submod :: proc(remainder, number, decrease, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number - decrease) % modulus.

    Related Procedure Groups

    int_swap ¶

    int_swap :: proc(a, b: ^Int) {…}
     

    In normal code, you can also write a, b = b, a. However, that only swaps within the current scope. This helper swaps completely.

    Related Procedure Groups

    int_to_bytes_big ¶

    int_to_bytes_big :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Return Big Endian binary representation of a, either signed or unsigned. If a is negative and we ask for the default unsigned representation, we return abs(a).

    int_to_bytes_big_python ¶

    int_to_bytes_big_python :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Return Python 3.x compatible Big Endian binary representation of a, either signed or unsigned. If a is negative when asking for an unsigned number, we return an error like Python does.

    int_to_bytes_little ¶

    int_to_bytes_little :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Return Little Endian binary representation of a, either signed or unsigned. If a is negative and we ask for the default unsigned representation, we return abs(a).

    int_to_bytes_little_python ¶

    int_to_bytes_little_python :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Return Python 3.x compatible Little Endian binary representation of a, either signed or unsigned. If a is negative when asking for an unsigned number, we return an error like Python does.

    int_to_bytes_size ¶

    int_to_bytes_size :: proc(a: ^Int, signed: bool = false, allocator := context.allocator) -> (size_in_bytes: int, err: Error) {…}
     

    Size binary representation

    int_to_cstring ¶

    int_to_cstring :: int_itoa_cstring
     

    This version of itoa allocates on behalf of the caller. The caller must free the string. The radix defaults to 10.

    int_to_string ¶

    int_to_string :: int_itoa_string
     

    This version of itoa allocates on behalf of the caller. The caller must free the string. The radix defaults to 10.

    Related Procedure Groups

    internal_assert_initialized ¶

    internal_assert_initialized :: proc(a: ^Int, loc := #caller_location) {…}
     

    Internal helpers.

    internal_clamp ¶

    internal_clamp :: proc(a: ^Int) -> (err: Error) {…}
     

    Trim unused digits.

    This is used to ensure that leading zero digits are trimmed and the leading "used" digit will be non-zero. Typically very fast. Also fixes the sign if there are no more leading digits.

    internal_clear_if_uninitialized_multi ¶

    internal_clear_if_uninitialized_multi :: proc(.. args: ..^Int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    internal_clear_if_uninitialized_single ¶

    internal_clear_if_uninitialized_single :: proc(arg: ^Int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    internal_copy_digits ¶

    internal_copy_digits :: proc(dest, src: ^Int, digits: int, offset: int = int(0)) -> (err: Error) {…}

    internal_count_bits ¶

    internal_count_bits :: proc(a: ^Int) -> (count: int) {…}
     

    Count bits in an Int. Assumes a not to be nil and to have been initialized.

    internal_digit_log ¶

    internal_digit_log :: proc(a: DIGIT, base: DIGIT) -> (log: int, err: Error) {…}
     

    Returns log_base(a), where a is a DIGIT.

    Related Procedure Groups

    internal_error_if_immutable_multi ¶

    internal_error_if_immutable_multi :: proc "contextless" (.. args: ..^Int) -> (err: Error) {…}
    Related Procedure Groups

    internal_error_if_immutable_single ¶

    internal_error_if_immutable_single :: proc "contextless" (arg: ^Int) -> (err: Error) {…}
    Related Procedure Groups

    internal_get_low_u32 ¶

    internal_get_low_u32 :: proc(a: ^Int) -> u32 {…}

    internal_get_low_u64 ¶

    internal_get_low_u64 :: proc(a: ^Int) -> u64 {…}

    internal_int_abs ¶

    internal_int_abs :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Set dest to |src|.

    Related Procedure Groups

    internal_int_add_digit ¶

    internal_int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {…}
     

    Low-level addition Int+DIGIT, signed. Handbook of Applied Cryptography, algorithm 14.7.

    Assumptions:

    `dest` and `a` != `nil` and have been initalized.
    `dest` is large enough (a.used + 1) to fit result.
    
    Related Procedure Groups

    internal_int_add_signed ¶

    internal_int_add_signed :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Low-level addition, signed. Handbook of Applied Cryptography, algorithm 14.7.

    Assumptions:

    `dest`, `a` and `b` != `nil` and have been initalized.
    
    Related Procedure Groups

    internal_int_add_unsigned ¶

    internal_int_add_unsigned :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Low-level addition, unsigned. Handbook of Applied Cryptography, algorithm 14.7.

    Assumptions:

    `dest`, `a` and `b` != `nil` and have been initalized.
    
    Related Procedure Groups

    internal_int_addmod ¶

    internal_int_addmod :: proc(remainder, number, addend, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number + addend) % modulus.

    Related Procedure Groups

    internal_int_allocated_cap ¶

    internal_int_allocated_cap :: proc(a: ^Int) -> (cap: int) {…}
     

    This procedure returns the allocated capacity of an Int. Assumes a not to be nil.

    internal_int_and ¶

    internal_int_and :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    2's complement and, returns dest = a & b;

    Related Procedure Groups

    internal_int_bitfield_extract ¶

    internal_int_bitfield_extract :: proc(a: ^Int, offset, count: int) -> (res: _WORD, err: Error) {…}

    internal_int_bitfield_extract_bool ¶

    internal_int_bitfield_extract_bool :: proc(a: ^Int, offset: int) -> (val: bool, err: Error) {…}
     

    Helpers to extract values from the Int. Offset is zero indexed.

    internal_int_bitfield_extract_single ¶

    internal_int_bitfield_extract_single :: proc(a: ^Int, offset: int) -> (bit: _WORD, err: Error) {…}

    internal_int_bitfield_set_single ¶

    internal_int_bitfield_set_single :: proc(a: ^Int, offset: int) -> (err: Error) {…}
     

    Helpers to (un)set a bit in an Int. Offset is zero indexed.

    internal_int_bitfield_toggle_single ¶

    internal_int_bitfield_toggle_single :: proc(a: ^Int, offset: int) -> (err: Error) {…}

    internal_int_bitfield_unset_single ¶

    internal_int_bitfield_unset_single :: proc(a: ^Int, offset: int) -> (err: Error) {…}

    internal_int_clear ¶

    internal_int_clear :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Clear Int and resize it to the default size. Assumes a not to be nil.

    Related Procedure Groups

    internal_int_compare ¶

    internal_int_compare :: proc(a, b: ^Int) -> (comparison: int) {…}
     

    Compare two Ints, signed. Returns -1 if a < b, 0 if a == b and 1 if b > a.

    Expects a and b both to be valid Ints, i.e. initialized and not nil.

    Related Procedure Groups

    internal_int_compare_digit ¶

    internal_int_compare_digit :: proc(a: ^Int, b: DIGIT) -> (comparison: int) {…}
     

    Compare an Int to an unsigned number upto DIGIT & _MASK. Returns -1 if a < b, 0 if a == b and 1 if b > a.

    Expects: a and b both to be valid Ints, i.e. initialized and not nil.

    Related Procedure Groups

    internal_int_compare_magnitude ¶

    internal_int_compare_magnitude :: proc(a, b: ^Int) -> (comparison: int) {…}
     

    Compare the magnitude of two Ints, unsigned.

    Related Procedure Groups

    internal_int_complement ¶

    internal_int_complement :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    dest = ~src

    Related Procedure Groups

    internal_int_copy ¶

    internal_int_copy :: proc(dest, src: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Copy one Int to another.

    Related Procedure Groups

    internal_int_count_lsb ¶

    internal_int_count_lsb :: proc(a: ^Int) -> (count: int, err: Error) {…}
     

    Returns the number of trailing zeroes before the first one. Differs from regular ctz in that 0 returns 0.

    Assumes a not to be nil and have been initialized.

    Related Procedure Groups

    internal_int_decr ¶

    internal_int_decr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    internal_int_destroy ¶

    internal_int_destroy :: proc(.. integers: ..^Int) {…}
     

    Deallocates the backing memory of one or more Ints. Asssumes none of the integers to be a nil.

    Related Procedure Groups

    internal_int_div ¶

    internal_int_div :: proc(quotient, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Asssumes quotient, numerator and denominator to have been initialized and not to be nil.

    Related Procedure Groups

    internal_int_divmod ¶

    internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    divmod. Both the quotient and remainder are optional and may be passed a nil. numerator and denominator are expected not to be nil and have been initialized.

    Related Procedure Groups

    internal_int_divmod_digit ¶

    internal_int_divmod_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {…}
     

    Single digit division (based on routine from MPI). The quotient is optional and may be passed a nil.

    Related Procedure Groups

    internal_int_equals ¶

    internal_int_equals :: proc(a, b: ^Int) -> (equals: bool) {…}
     

    bool := a == b

    Related Procedure Groups

    internal_int_equals_abs ¶

    internal_int_equals_abs :: proc(a, b: ^Int) -> (equals: bool) {…}
     
    bool := |a| == |b|
    

    Compares the magnitudes only, ignores the sign.

    Related Procedure Groups

    internal_int_equals_digit ¶

    internal_int_equals_digit :: proc(a: ^Int, b: DIGIT) -> (equals: bool) {…}
     

    bool := a == b

    Related Procedure Groups

    internal_int_exponent_mod ¶

    internal_int_exponent_mod :: internal_int_power_modulo
     

    This is a shell function that calls either the normal or Montgomery exptmod functions. Originally the call to the Montgomery code was embedded in the normal function but that wasted alot of stack space for nothing (since 99% of the time the Montgomery code would be called).

    Computes res == G**X mod P. Assumes res, G, X and P to not be nil and for G, X and P to have been initialized.

    Related Procedure Groups

    internal_int_extended_euclidean ¶

    internal_int_extended_euclidean :: proc(
    	a, b, U1, U2, U3: ^Int, 
    	allocator := context.allocator, 
    ) -> (err: Error) {…}
     

    Extended Euclidean algorithm of (a, b) produces a * u1 + b * u2 = u3.

    internal_int_factorial ¶

    internal_int_factorial :: proc(res: ^Int, n: int, allocator := context.allocator) -> (err: Error) {…}
     

    TODO: Use Sterling's Approximation to estimate log2(N!) to size the result. This way we'll have to reallocate less, possibly not at all.

    internal_int_gcd ¶

    internal_int_gcd :: proc(res_gcd, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_gcd_lcm ¶

    internal_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Returns GCD, LCM or both.

    Assumes a and b to have been initialized. res_gcd and res_lcm can be nil or ^Int depending on which results are desired.

    internal_int_get ¶

    internal_int_get :: proc(a: ^Int, $T: typeid) -> (res: typeid, err: Error) {…}
     

    TODO: Think about using count_bits to check if the value could be returned completely, and maybe return max(T), .Integer_Overflow if not?

    Related Procedure Groups

    internal_int_get_float ¶

    internal_int_get_float :: proc(a: ^Int) -> (res: f64, err: Error) {…}

    internal_int_get_i128 ¶

    internal_int_get_i128 :: proc(a: ^Int) -> (res: i128, err: Error) {…}
    Related Procedure Groups

    internal_int_get_i32 ¶

    internal_int_get_i32 :: proc(a: ^Int) -> (res: i32, err: Error) {…}
    Related Procedure Groups

    internal_int_get_i64 ¶

    internal_int_get_i64 :: proc(a: ^Int) -> (res: i64, err: Error) {…}
    Related Procedure Groups

    internal_int_get_u128 ¶

    internal_int_get_u128 :: proc(a: ^Int) -> (res: u128, err: Error) {…}
    Related Procedure Groups

    internal_int_get_u32 ¶

    internal_int_get_u32 :: proc(a: ^Int) -> (res: u32, err: Error) {…}
    Related Procedure Groups

    internal_int_get_u64 ¶

    internal_int_get_u64 :: proc(a: ^Int) -> (res: u64, err: Error) {…}
    Related Procedure Groups

    internal_int_greater_than ¶

    internal_int_greater_than :: proc(a, b: ^Int) -> (greater_than: bool) {…}
     

    bool := a > b

    Related Procedure Groups

    internal_int_greater_than_abs ¶

    internal_int_greater_than_abs :: proc(a, b: ^Int) -> (greater_than: bool) {…}
     
    bool := |a| > |b|
    

    Compares the magnitudes only, ignores the sign.

    Related Procedure Groups

    internal_int_greater_than_digit ¶

    internal_int_greater_than_digit :: proc(a: ^Int, b: DIGIT) -> (greater_than: bool) {…}
     

    bool := a > b

    Related Procedure Groups

    internal_int_greater_than_or_equal ¶

    internal_int_greater_than_or_equal :: proc(a, b: ^Int) -> (greater_than_or_equal: bool) {…}
     

    bool := a >= b

    Related Procedure Groups

    internal_int_greater_than_or_equal_abs ¶

    internal_int_greater_than_or_equal_abs :: proc(a, b: ^Int) -> (greater_than_or_equal: bool) {…}
     
    bool := |a| >= |b|
    

    Compares the magnitudes only, ignores the sign.

    Related Procedure Groups

    internal_int_greater_than_or_equal_digit ¶

    internal_int_greater_than_or_equal_digit :: proc(a: ^Int, b: DIGIT) -> (greater_than_or_equal: bool) {…}
     

    bool := a >= b

    Related Procedure Groups

    internal_int_grow ¶

    internal_int_grow :: proc(a: ^Int, digits: int, allow_shrink: bool = false, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    internal_int_incr ¶

    internal_int_incr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    internal_int_inf ¶

    internal_int_inf :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to Inf and optionally shrink it to the minimum backing size.

    Related Procedure Groups

    internal_int_init_multi ¶

    internal_int_init_multi :: proc(.. integers: ..^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Allocates several Ints at once.

    Related Procedure Groups

    internal_int_inverse_modulo ¶

    internal_int_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    hac 14.61, pp608.

    Related Procedure Groups

    internal_int_invmod ¶

    internal_int_invmod :: internal_int_inverse_modulo
     

    hac 14.61, pp608.

    Related Procedure Groups

    internal_int_is_even ¶

    internal_int_is_even :: proc(a: ^Int) -> (even: bool) {…}
     

    This procedure will return true if the Int is even, false if not. Assumes a not to be nil.

    Related Procedure Groups

    internal_int_is_initialized ¶

    internal_int_is_initialized :: proc(a: ^Int) -> (initialized: bool) {…}
     

    This procedure will return true if the Int is initialized, false if not. Assumes a not to be nil.

    Related Procedure Groups

    internal_int_is_negative ¶

    internal_int_is_negative :: proc(a: ^Int) -> (negative: bool) {…}
     

    This procedure will return true if the Int is negative, false if not. Assumes a not to be nil.

    Related Procedure Groups

    internal_int_is_odd ¶

    internal_int_is_odd :: proc(a: ^Int) -> (odd: bool) {…}
     

    This procedure will return true if the Int is even, false if not. Assumes a not to be nil.

    Related Procedure Groups

    internal_int_is_positive ¶

    internal_int_is_positive :: proc(a: ^Int) -> (positive: bool) {…}
     

    This procedure will return true if the Int is positive, false if not. Assumes a not to be nil.

    Related Procedure Groups

    internal_int_is_power_of_two ¶

    internal_int_is_power_of_two :: proc(a: ^Int) -> (power_of_two: bool) {…}
     

    This procedure will return true if the Int is a power of two, false if not. Assumes a not to be nil.

    Related Procedure Groups

    internal_int_is_prime ¶

    internal_int_is_prime :: proc(a: ^Int, miller_rabin_trials: int = int(-1), miller_rabin_only: bool = USE_MILLER_RABIN_ONLY, allocator := context.allocator) -> (is_prime: bool, err: Error) {…}
     

    a is the big Int to test for primality.

    miller_rabin_trials can be one of the following:

    `< 0`:	For `a` up to 3_317_044_064_679_887_385_961_981, set `miller_rabin_trials` to negative to run a predetermined
    		number of trials for a deterministic answer.
    `= 0`:	Run Miller-Rabin with bases 2, 3 and one random base < `a`. Non-deterministic.
    `> 0`:	Run Miller-Rabin with bases 2, 3 and `miller_rabin_trials` number of random bases. Non-deterministic.
    
    

    miller_rabin_only:

    `false`	Also use either Frobenius-Underwood or Lucas-Selfridge, depending on the compile-time `MATH_BIG_USE_FROBENIUS_TEST` choice.
    `true`	Run Rabin-Miller trials but skip Frobenius-Underwood / Lucas-Selfridge.
    
    

    r takes a pointer to an instance of core:math/rand's Rand and may be nil to use the global one.

    Returns is_prime (bool), where:

    `false`	Definitively composite.
    `true`	Probably prime if `miller_rabin_trials` >= 0, with increasing certainty with more trials.
    		Deterministically prime if `miller_rabin_trials` = 0 for `a` up to 3_317_044_064_679_887_385_961_981.
    
    

    Assumes a not to be nil and to have been initialized.

    internal_int_is_square ¶

    internal_int_is_square :: proc(a: ^Int, allocator := context.allocator) -> (square: bool, err: Error) {…}
     

    Check if remainders are possible squares - fast exclude non-squares.

    Returns true if a is a square, false if not. Assumes a not to be nil and to have been initialized.

    internal_int_is_zero ¶

    internal_int_is_zero :: proc(a: ^Int) -> (zero: bool) {…}
     

    This procedure will return true if the Int is zero, false if not. Assumes a not to be nil.

    Related Procedure Groups

    internal_int_kronecker ¶

    internal_int_kronecker :: proc(a, p: ^Int, allocator := context.allocator) -> (kronecker: int, err: Error) {…}
     

    Kronecker/Legendre symbol (a|p) Straightforward implementation of algorithm 1.4.10 in Henri Cohen: "A Course in Computational Algebraic Number Theory"

    @book{cohen2013course,

    title={A course in computational algebraic number theory},
    author={Cohen, Henri},
    volume={138},
    year={2013},
    publisher={Springer Science \& Business Media}
    

    }

    Assumes a and p to not be nil and to have been initialized.

    internal_int_lcm ¶

    internal_int_lcm :: proc(res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_legendre ¶

    internal_int_legendre :: internal_int_kronecker
     

    Kronecker/Legendre symbol (a|p) Straightforward implementation of algorithm 1.4.10 in Henri Cohen: "A Course in Computational Algebraic Number Theory"

    @book{cohen2013course,

    title={A course in computational algebraic number theory},
    author={Cohen, Henri},
    volume={138},
    year={2013},
    publisher={Springer Science \& Business Media}
    

    }

    Assumes a and p to not be nil and to have been initialized.

    internal_int_less_than ¶

    internal_int_less_than :: proc(a, b: ^Int) -> (less_than: bool) {…}
     

    bool := a < b

    Related Procedure Groups

    internal_int_less_than_abs ¶

    internal_int_less_than_abs :: proc(a, b: ^Int) -> (less_than: bool) {…}
     
    bool := |a| < |b|
    

    Compares the magnitudes only, ignores the sign.

    Related Procedure Groups

    internal_int_less_than_digit ¶

    internal_int_less_than_digit :: proc(a: ^Int, b: DIGIT) -> (less_than: bool) {…}
     

    bool := a < b

    Related Procedure Groups

    internal_int_less_than_or_equal ¶

    internal_int_less_than_or_equal :: proc(a, b: ^Int) -> (less_than_or_equal: bool) {…}
     

    bool := a <= b

    Related Procedure Groups

    internal_int_less_than_or_equal_abs ¶

    internal_int_less_than_or_equal_abs :: proc(a, b: ^Int) -> (less_than_or_equal: bool) {…}
     
    bool := |a| <= |b|
    

    Compares the magnitudes only, ignores the sign.

    Related Procedure Groups

    internal_int_less_than_or_equal_digit ¶

    internal_int_less_than_or_equal_digit :: proc(a: ^Int, b: DIGIT) -> (less_than_or_equal: bool) {…}
     

    bool := a <= b

    Related Procedure Groups

    internal_int_log ¶

    internal_int_log :: proc(a: ^Int, base: DIGIT) -> (res: int, err: Error) {…}
     

    Returns log_base(a). Assumes a to not be nil and have been iniialized.

    Related Procedure Groups

    internal_int_minus_inf ¶

    internal_int_minus_inf :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to -Inf and optionally shrink it to the minimum backing size.

    internal_int_minus_one ¶

    internal_int_minus_one :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to -1 and optionally shrink it to the minimum backing size.

    Related Procedure Groups

    internal_int_mod ¶

    internal_int_mod :: proc(remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = numerator % denominator. 0 <= remainder < denominator if denominator > 0 denominator < remainder <= 0 if denominator < 0

    Asssumes quotient, numerator and denominator to have been initialized and not to be nil.

    Related Procedure Groups

    internal_int_mod_bits ¶

    internal_int_mod_bits :: proc(remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = numerator % (1 << bits)

    Assumes remainder and numerator both not to be nil and bits to be >= 0.

    internal_int_mod_digit ¶

    internal_int_mod_digit :: proc(numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {…}
    Related Procedure Groups

    internal_int_mul ¶

    internal_int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    High level multiplication (handles sign).

    Related Procedure Groups

    internal_int_mul_denom ¶

    internal_int_mul_denom :: proc(dst, x, y: ^Int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_mul_digit ¶

    internal_int_mul_digit :: proc(dest, src: ^Int, multiplier: DIGIT, allocator := context.allocator) -> (err: Error) {…}
     

    Multiply by a DIGIT.

    Related Procedure Groups

    internal_int_mul_integer ¶

    internal_int_mul_integer :: proc(dest, a: ^Int, b: $T, allocator := context.allocator) -> (err: Error) {…}
     
    Multiply bigint `a` with int `d` and put the result in `dest`.
    

    Like internal_int_mul_digit but with an integer as the small input.

    Related Procedure Groups

    internal_int_mulmod ¶

    internal_int_mulmod :: proc(remainder, number, multiplicand, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number * multiplicand) % modulus.

    Related Procedure Groups

    internal_int_nan ¶

    internal_int_nan :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to NaN and optionally shrink it to the minimum backing size.

    Related Procedure Groups

    internal_int_neg ¶

    internal_int_neg :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Set dest to -src.

    Related Procedure Groups

    internal_int_one ¶

    internal_int_one :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to 1 and optionally shrink it to the minimum backing size.

    Related Procedure Groups

    internal_int_or ¶

    internal_int_or :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    2's complement or, returns dest = a | b;

    Related Procedure Groups

    internal_int_pack ¶

    internal_int_pack :: proc(a: ^Int, buf: []$T, nails: int = 0, order: Order = Order.LSB_First) -> (written: int, err: Error) {…}
     

    Based on gmp's mpz_export. See https://gmplib.org/manual/Integer-Import-and-Export.html

    buf is a pre-allocated slice of type T "words", which must be an unsigned integer of some description.

    Use `internal_int_pack_count(a, T, nails)` to calculate the necessary size.
    The library internally uses `DIGIT` as the type, which is u64 or u32 depending on the platform.
    You are of course welcome to export to []u8, []u32be, and so forth.
    After this you can use `mem.slice_data_cast` to interpret the buffer as bytes if you so choose.
    
    

    nails are the number of top bits the output "word" reserves.

    To mimic the internals of this library, this would be 4.
    
    

    To use the minimum amount of output bytes, set nails to 0 and pass a []u8. IMPORTANT: pack serializes the magnitude of an Int, that is, the output is unsigned.

    Assumes a not to be nil and to have been initialized.

    internal_int_pack_count ¶

    internal_int_pack_count :: proc(a: ^Int, $T: typeid, nails: int = 0) -> (size_needed: int) {…}
     

    Calculate the size needed for internal_int_pack.

    See https://gmplib.org/manual/Integer-Import-and-Export.html

    internal_int_pow ¶

    internal_int_pow :: proc(dest, base: ^Int, power: int, allocator := context.allocator) -> (err: Error) {…}
     

    Calculate dest = base^power using a square-multiply algorithm. Assumes dest and base not to be nil and to have been initialized.

    Related Procedure Groups

    internal_int_pow_int ¶

    internal_int_pow_int :: proc(dest: ^Int, base, power: int, allocator := context.allocator) -> (err: Error) {…}
     

    Calculate dest = base^power. Assumes dest not to be nil and to have been initialized.

    Related Procedure Groups

    internal_int_power_modulo ¶

    internal_int_power_modulo :: proc(res, G, X, P: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    This is a shell function that calls either the normal or Montgomery exptmod functions. Originally the call to the Montgomery code was embedded in the normal function but that wasted alot of stack space for nothing (since 99% of the time the Montgomery code would be called).

    Computes res == G**X mod P. Assumes res, G, X and P to not be nil and for G, X and P to have been initialized.

    Related Procedure Groups

    internal_int_power_of_two ¶

    internal_int_power_of_two :: proc(a: ^Int, power: int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_powmod ¶

    internal_int_powmod :: internal_int_power_modulo
     

    This is a shell function that calls either the normal or Montgomery exptmod functions. Originally the call to the Montgomery code was embedded in the normal function but that wasted alot of stack space for nothing (since 99% of the time the Montgomery code would be called).

    Computes res == G**X mod P. Assumes res, G, X and P to not be nil and for G, X and P to have been initialized.

    Related Procedure Groups

    internal_int_prime_frobenius_underwood ¶

    internal_int_prime_frobenius_underwood :: proc(N: ^Int, allocator := context.allocator) -> (result: bool, err: Error) {…}

    internal_int_prime_is_divisible ¶

    internal_int_prime_is_divisible :: proc(a: ^Int, allocator := context.allocator) -> (res: bool, err: Error) {…}
     

    Determines if an Integer is divisible by one of the _PRIME_TABLE primes. Returns true if it is, false if not.

    internal_int_prime_miller_rabin ¶

    internal_int_prime_miller_rabin :: proc(a, b: ^Int, allocator := context.allocator) -> (probably_prime: bool, err: Error) {…}
     

    Miller-Rabin test of "a" to the base of "b" as described in HAC pp. 139 Algorithm 4.24.

    Sets result to false if definitely composite or true if probably prime. Randomly the chance of error is no more than 1/4 and often very much lower.

    Assumes a and b not to be nil and to have been initialized.

    internal_int_prime_next_prime ¶

    internal_int_prime_next_prime :: proc(a: ^Int, trials: int, bbs_style: bool, allocator := context.allocator) -> (err: Error) {…}
     

    Finds the next prime after the number a using t trials of Miller-Rabin, in place: It sets a to the prime found. bbs_style = true means the prime must be congruent to 3 mod 4

    internal_int_prime_strong_lucas_selfridge ¶

    internal_int_prime_strong_lucas_selfridge :: proc(a: ^Int, allocator := context.allocator) -> (lucas_selfridge: bool, err: Error) {…}
     

    Strong Lucas-Selfridge test. returns true if it is a strong L-S prime, false if it is composite

    Code ported from Thomas Ray Nicely's implementation of the BPSW test at http://www.trnicely.net/misc/bpsw.html

    Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>. Released into the public domain by the author, who disclaims any legal liability arising from its use.

    The multi-line comments are made by Thomas R. Nicely and are copied verbatim. (If that name sounds familiar, he is the guy who found the fdiv bug in the Pentium CPU.)

    internal_int_random ¶

    internal_int_random :: proc(dest: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    internal_int_random_digit ¶

    internal_int_random_digit :: proc() -> (res: DIGIT) {…}

    internal_int_read_from_ascii_file ¶

    internal_int_read_from_ascii_file :: proc(a: ^Int, filename: string, radix: i8 = i8(10), allocator := context.allocator) -> (err: Error) {…}
     

    Read an Int from an ASCII file.

    internal_int_root_n ¶

    internal_int_root_n :: proc(dest, src: ^Int, n: int, allocator := context.allocator) -> (err: Error) {…}
     

    Find the nth root of an Integer. Result found such that (dest)**n <= src and (dest+1)**n > src

    This algorithm uses Newton's approximation x[i+1] = x[i] - f(x[i])/f'(x[i]), which will find the root in log(n) time where each step involves a fair bit.

    Assumes dest and src not to be nil and have been initialized.

    Related Procedure Groups

    internal_int_scale_denom ¶

    internal_int_scale_denom :: proc(dst, x, y: ^Int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_set_from_integer ¶

    internal_int_set_from_integer :: proc(dest: ^Int, src: $T, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Helpers to set an Int to a specific value.

    Related Procedure Groups

    internal_int_shl ¶

    internal_int_shl :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    Shift left by a certain bit count.

    Related Procedure Groups

    internal_int_shl1 ¶

    internal_int_shl1 :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    dest = src * 2 dest = src << 1

    internal_int_shr ¶

    internal_int_shr :: proc(dest, source: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    internal_int_shr1 ¶

    internal_int_shr1 :: proc(dest, src: ^Int) -> (err: Error) {…}
     

    dest = src / 2 dest = src >> 1

    Assumes dest and src not to be nil and have been initialized. We make no allocations here.

    internal_int_shr_signed ¶

    internal_int_shr_signed :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    Shift right by a certain bit count with sign extension.

    Related Procedure Groups

    internal_int_shrink ¶

    internal_int_shrink :: proc(a: ^Int) -> (err: Error) {…}
     

    Resize backing store. We don't need to pass the allocator, because the storage itself stores it.

    Assumes a not to be nil, and to have already been initialized.

    Related Procedure Groups

    internal_int_shrmod ¶

    internal_int_shrmod :: proc(quotient, remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    quotient, remainder := numerator >> bits; remainder is allowed to be passed a nil, in which case mod won't be computed.

    Related Procedure Groups

    internal_int_sqrmod ¶

    internal_int_sqrmod :: proc(remainder, number, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number * number) % modulus.

    Related Procedure Groups

    internal_int_sqrt ¶

    internal_int_sqrt :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    This function is less generic than root_n, simpler and faster. Assumes dest and src not to be nil and to have been initialized.

    Related Procedure Groups

    internal_int_sqrtmod_prime ¶

    internal_int_sqrtmod_prime :: proc(res, n, prime: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Tonelli-Shanks algorithm https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html

    internal_int_sub_digit ¶

    internal_int_sub_digit :: proc(dest, number: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {…}
     

    Low-level subtraction, signed. Handbook of Applied Cryptography, algorithm 14.9. dest = number - decrease. Assumes |number| > |decrease|.

    Assumptions:

    `dest`, `number` != `nil` and have been initalized.
    `dest` is large enough (number.used + 1) to fit result.
    
    Related Procedure Groups

    internal_int_sub_signed ¶

    internal_int_sub_signed :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Low-level subtraction, signed. Handbook of Applied Cryptography, algorithm 14.9. dest = number - decrease. Assumes |number| > |decrease|.

    Assumptions:

    `dest`, `number` and `decrease` != `nil` and have been initalized.
    
    Related Procedure Groups

    internal_int_sub_unsigned ¶

    internal_int_sub_unsigned :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Low-level subtraction, dest = number - decrease. Assumes |number| > |decrease|. Handbook of Applied Cryptography, algorithm 14.9.

    Assumptions:

    `dest`, `number` and `decrease` != `nil` and have been initalized.
    
    Related Procedure Groups

    internal_int_submod ¶

    internal_int_submod :: proc(remainder, number, decrease, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number - decrease) % modulus.

    Related Procedure Groups

    internal_int_swap ¶

    internal_int_swap :: proc(a, b: ^Int) {…}
     

    In normal code, you can also write a, b = b, a. However, that only swaps within the current scope. This helper swaps completely.

    Related Procedure Groups

    internal_int_unpack ¶

    internal_int_unpack :: proc(a: ^Int, buf: []$T, nails: int = 0, order: Order = Order.LSB_First, allocator := context.allocator) -> (err: Error) {…}

    internal_int_write_to_ascii_file ¶

    internal_int_write_to_ascii_file :: proc(a: ^Int, filename: string, radix: i8 = i8(10), allocator := context.allocator) -> (err: Error) {…}
     

    Write an Int to an ASCII file.

    internal_int_xor ¶

    internal_int_xor :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    2's complement xor, returns dest = a ~ b;

    Related Procedure Groups

    internal_int_zero_unused ¶

    internal_int_zero_unused :: proc(dest: ^Int, old_used: int = -1) {…}
    Related Procedure Groups

    internal_platform_abs ¶

    internal_platform_abs :: proc(n: $T) -> $T {…}
    Related Procedure Groups

    internal_platform_count_lsb ¶

    internal_platform_count_lsb :: proc(a: $T) -> (count: int) {…}
    Related Procedure Groups

    internal_prime_fermat ¶

    internal_prime_fermat :: proc(a, b: ^Int, allocator := context.allocator) -> (fermat: bool, err: Error) {…}
     

    Performs one Fermat test.

    If "a" were prime then b**a == b (mod a) since the order of the multiplicative sub-group would be phi(a) = a-1. That means it would be the same as b(a mod (a-1)) == b1 == b (mod a).

    Returns true if the congruence holds, or false otherwise.

    Assumes a and b not to be nil and to have been initialized.

    internal_random_prime ¶

    internal_random_prime :: proc(a: ^Int, size_in_bits: int, trials: int, flags: bit_set[Primality_Flag; u8] = Primality_Flags{}, allocator := context.allocator) -> (err: Error) {…}
     

    Makes a truly random prime of a given size (bits),

    Flags are as follows: Blum_Blum_Shub - Make prime congruent to 3 mod 4

    Safe              - Make sure (p-1)/2 is prime as well (implies .Blum_Blum_Shub)
    Second_MSB_On     - Make the 2nd highest bit one
    
    

    This is possibly the mother of all prime generation functions, muahahahahaha!

    internal_rat_destroy ¶

    internal_rat_destroy :: proc(.. rationals: ..^Rat) {…}
    Related Procedure Groups

    internal_rat_is_zero ¶

    internal_rat_is_zero :: proc(z: ^Rat) -> bool {…}
    Related Procedure Groups

    internal_rat_norm ¶

    internal_rat_norm :: proc(z: ^Rat, allocator := context.allocator) -> (err: Error) {…}

    internal_rat_swap ¶

    internal_rat_swap :: proc(a, b: ^Rat) {…}
    Related Procedure Groups

    internal_rat_to_float ¶

    internal_rat_to_float :: proc($T: typeid, z: ^Rat, allocator := context.allocator) -> (f: typeid, exact: bool, err: Error) {…}

    internal_small_pow ¶

    internal_small_pow :: proc(base: _WORD, exponent: _WORD) -> (result: _WORD) {…}

    internal_sqr ¶

    internal_sqr :: proc(dest, src: ^Int, allocator := context.allocator) -> (res: Error) {…}

    number_of_rabin_miller_trials ¶

    number_of_rabin_miller_trials :: proc(bit_size: int) -> (number_of_trials: int) {…}
     

    Returns the number of Rabin-Miller trials needed for a given bit size.

    permutations_with_repetition ¶

    permutations_with_repetition :: int_pow_int
     

    Calculate dest = base^power using a square-multiply algorithm.

    Related Procedure Groups

    permutations_without_repetition ¶

    permutations_without_repetition :: proc(dest: ^Int, n, r: int) -> (error: Error) {…}
     

    With n items, calculate how many ways that r of them can be ordered without any repeats.

    platform_abs ¶

    platform_abs :: proc(n: $T) -> $T {…}
    Related Procedure Groups

    platform_count_lsb ¶

    platform_count_lsb :: proc(a: $T) -> (count: int) {…}
    Related Procedure Groups

    platform_int_is_power_of_two ¶

    platform_int_is_power_of_two :: proc(a: int) -> bool {…}
    Related Procedure Groups

    power_of_two ¶

    power_of_two :: proc(a: ^Int, power: int, allocator := context.allocator) -> (err: Error) {…}

    radix_size ¶

    radix_size :: proc(a: ^Int, radix: i8, zero_terminate: bool = false, allocator := context.allocator) -> (size: int, err: Error) {…}
     

    We size for string by default.

    rat_abs ¶

    rat_abs :: proc(dst, x: ^Rat, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_add_int ¶

    rat_add_int :: proc(dst, x: ^Rat, y: ^Int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_add_rat ¶

    rat_add_rat :: proc(dst, x, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_compare ¶

    rat_compare :: proc(x, y: ^Rat, allocator := context.allocator) -> (comparison: int, error: Error) {…}

    rat_copy ¶

    rat_copy :: proc(dst, src: ^Rat, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_div_int ¶

    rat_div_int :: proc(dst, x: ^Rat, y: ^Int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_div_rat ¶

    rat_div_rat :: proc(dst, x, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_is_even ¶

    rat_is_even :: proc(z: ^Rat, allocator := context.allocator) -> (ok: bool, err: Error) {…}
    Related Procedure Groups

    rat_is_int ¶

    rat_is_int :: proc(z: ^Rat) -> bool {…}

    rat_is_negative ¶

    rat_is_negative :: proc(z: ^Rat, allocator := context.allocator) -> (ok: bool, err: Error) {…}
    Related Procedure Groups

    rat_is_odd ¶

    rat_is_odd :: proc(z: ^Rat, allocator := context.allocator) -> (ok: bool, err: Error) {…}
    Related Procedure Groups

    rat_is_positive ¶

    rat_is_positive :: proc(z: ^Rat, allocator := context.allocator) -> (ok: bool, err: Error) {…}
    Related Procedure Groups

    rat_is_zero ¶

    rat_is_zero :: proc(z: ^Rat) -> bool {…}
    Related Procedure Groups

    rat_mul_int ¶

    rat_mul_int :: proc(dst, x: ^Rat, y: ^Int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_mul_rat ¶

    rat_mul_rat :: proc(dst, x, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_neg ¶

    rat_neg :: proc(dst, x: ^Rat, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_set_digit ¶

    rat_set_digit :: proc(dst: ^Rat, a: DIGIT, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_set_f16 ¶

    rat_set_f16 :: proc(dst: ^Rat, f: f16, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_set_f32 ¶

    rat_set_f32 :: proc(dst: ^Rat, f: f32, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_set_f64 ¶

    rat_set_f64 :: proc(dst: ^Rat, f: f64, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_set_frac_digit ¶

    rat_set_frac_digit :: proc(dst: ^Rat, a, b: DIGIT, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_set_frac_int ¶

    rat_set_frac_int :: proc(dst: ^Rat, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_set_i64 ¶

    rat_set_i64 :: proc(dst: ^Rat, x: i64, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_set_int ¶

    rat_set_int :: proc(dst: ^Rat, a: ^Int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_set_rat ¶

    rat_set_rat :: proc(dst, x: ^Rat, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_set_u64 ¶

    rat_set_u64 :: proc(dst: ^Rat, x: u64, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_sign ¶

    rat_sign :: proc(z: ^Rat) -> Sign {…}

    rat_sqr ¶

    rat_sqr :: proc(dest, src: ^Rat) -> (err: Error) {…}
    Related Procedure Groups

    rat_sub_int ¶

    rat_sub_int :: proc(dst, x: ^Rat, y: ^Int, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_sub_rat ¶

    rat_sub_rat :: proc(dst, x, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}
    Related Procedure Groups

    rat_swap ¶

    rat_swap :: proc(a, b: ^Rat) {…}
    Related Procedure Groups

    rat_to_f16 ¶

    rat_to_f16 :: proc(z: ^Rat, allocator := context.allocator) -> (f: f16, exact: bool, err: Error) {…}

    rat_to_f32 ¶

    rat_to_f32 :: proc(z: ^Rat, allocator := context.allocator) -> (f: f32, exact: bool, err: Error) {…}

    rat_to_f64 ¶

    rat_to_f64 :: proc(z: ^Rat, allocator := context.allocator) -> (f: f64, exact: bool, err: Error) {…}

    shrink ¶

    shrink :: proc(a: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Resize backing store.

    small_pow ¶

    small_pow :: proc(base: _WORD, exponent: _WORD) -> (result: _WORD) {…}
    Related Procedure Groups

    string_to_int ¶

    string_to_int :: int_atoi
     

    Read a string [ASCII] in a given radix.

    Related Procedure Groups

    zero_unused ¶

    zero_unused :: proc(dest: ^Int, old_used: int = -1) {…}

    Procedure Groups

    add ¶

     

    High-level addition. Handles sign.

    addmod ¶

    addmod :: proc{
    	int_addmod,
    }
    

    atoi ¶

    atoi :: proc{
    	int_atoi,
    }
    

    bit_and ¶

    bit_and :: proc{
    	int_bit_and,
    }
    

    bit_complement ¶

    bit_complement :: proc{
    	int_bit_complement,
    }
    

    bit_or ¶

    bit_or :: proc{
    	int_bit_or,
    }
    

    bit_xor ¶

    bit_xor :: proc{
    	int_bit_xor,
    }
    

    choose ¶

    choose :: proc{
    	int_choose_digit,
    }
    

    clear ¶

    clear :: proc{
    	int_clear,
    }
    

    compare_magnitude ¶

    compare_magnitude :: proc{
    	int_compare_magnitude,
    }
    

    copy ¶

    copy :: proc{
    	int_copy,
    	rat_copy,
    }
    

    double ¶

    double :: proc{
    	int_double,
    }
    

    eq_abs ¶

    eq_abs :: proc{
    	int_equals_abs,
    }
    

    equals_abs ¶

    equals_abs :: proc{
    	int_equals_abs,
    }
    

    factorial ¶

    factorial :: proc{
    	int_factorial,
    }
    

    gcd ¶

    gcd :: proc{
    	int_gcd,
    }
    

    gcd_lcm ¶

    gcd_lcm :: proc{
    	int_gcd_lcm,
    }
    

    get ¶

    get :: proc{
    	int_get,
    }
    

    get_i128 ¶

    get_i128 :: proc{
    	int_get_i128,
    }
    

    get_i32 ¶

    get_i32 :: proc{
    	int_get_i32,
    }
    

    get_i64 ¶

    get_i64 :: proc{
    	int_get_i64,
    }
    

    get_u128 ¶

    get_u128 :: proc{
    	int_get_u128,
    }
    

    get_u32 ¶

    get_u32 :: proc{
    	int_get_u32,
    }
    

    get_u64 ¶

    get_u64 :: proc{
    	int_get_u64,
    }
    

    greater_than_abs ¶

    greater_than_abs :: proc{
    	int_greater_than_abs,
    }
    

    grow ¶

    grow :: proc{
    	int_grow,
    }
    

    halve ¶

    halve :: proc{
    	int_halve,
    }
    

    inf ¶

    inf :: proc{
    	int_inf,
    }
    

    init_multi ¶

    init_multi :: proc{
    	int_init_multi,
    }
    

    internal_add_signed ¶

    internal_add_signed :: proc{
    	internal_int_add_signed,
    }
    

    internal_addmod ¶

    internal_addmod :: proc{
    	internal_int_addmod,
    }
    

    internal_and ¶

    internal_and :: proc{
    	internal_int_and,
    }
    

    internal_clear ¶

    internal_clear :: proc{
    	internal_int_clear,
    }
    

    internal_complement ¶

    internal_complement :: proc{
    	internal_int_complement,
    }
    

    internal_copy ¶

    internal_copy :: proc{
    	internal_int_copy,
    }
    

    internal_decr ¶

    internal_decr :: proc{
    	internal_int_decr,
    }
    

    internal_div ¶

    internal_div :: proc{
    	internal_int_div,
    }
    

    internal_equals_abs ¶

    internal_equals_abs :: proc{
    	internal_int_equals_abs,
    }
    

    internal_get ¶

    internal_get :: proc{
    	internal_int_get,
    }
    

    internal_get_i128 ¶

    internal_get_i128 :: proc{
    	internal_int_get_i128,
    }
    

    internal_get_i32 ¶

    internal_get_i32 :: proc{
    	internal_int_get_i32,
    }
    

    internal_get_i64 ¶

    internal_get_i64 :: proc{
    	internal_int_get_i64,
    }
    

    internal_get_u128 ¶

    internal_get_u128 :: proc{
    	internal_int_get_u128,
    }
    

    internal_get_u32 ¶

    internal_get_u32 :: proc{
    	internal_int_get_u32,
    }
    

    internal_get_u64 ¶

    internal_get_u64 :: proc{
    	internal_int_get_u64,
    }
    

    internal_grow ¶

    internal_grow :: proc{
    	internal_int_grow,
    }
    

    internal_incr ¶

    internal_incr :: proc{
    	internal_int_incr,
    }
    

    internal_inf ¶

    internal_inf :: proc{
    	internal_int_inf,
    }
    

    internal_init_multi ¶

    internal_init_multi :: proc{
    	internal_int_init_multi,
    }
    

    internal_is_even ¶

    internal_is_even :: proc{
    	internal_int_is_even,
    }
    

    internal_is_negative ¶

    internal_is_negative :: proc{
    	internal_int_is_negative,
    }
    

    internal_is_odd ¶

    internal_is_odd :: proc{
    	internal_int_is_odd,
    }
    

    internal_is_positive ¶

    internal_is_positive :: proc{
    	internal_int_is_positive,
    }
    

    internal_minus_inf ¶

    internal_minus_inf :: proc{
    	internal_int_inf,
    }
    

    internal_minus_one ¶

    internal_minus_one :: proc{
    	internal_int_minus_one,
    }
    

    internal_mulmod ¶

    internal_mulmod :: proc{
    	internal_int_mulmod,
    }
    

    internal_nan ¶

    internal_nan :: proc{
    	internal_int_nan,
    }
    

    internal_neg ¶

    internal_neg :: proc{
    	internal_int_neg,
    }
    

    internal_one ¶

    internal_one :: proc{
    	internal_int_one,
    }
    

    internal_or ¶

    internal_or :: proc{
    	internal_int_or,
    }
    

    internal_random ¶

    internal_random :: proc{
    	internal_int_random,
    }
    

    internal_root_n ¶

    internal_root_n :: proc{
    	internal_int_root_n,
    }
    

    internal_shl ¶

    internal_shl :: proc{
    	internal_int_shl,
    }
    

    internal_shr ¶

    internal_shr :: proc{
    	internal_int_shr,
    }
    

    internal_shr_signed ¶

    internal_shr_signed :: proc{
    	internal_int_shr_signed,
    }
    

    internal_shrink ¶

    internal_shrink :: proc{
    	internal_int_shrink,
    }
    

    internal_shrmod ¶

    internal_shrmod :: proc{
    	internal_int_shrmod,
    }
    

    internal_sqrmod ¶

    internal_sqrmod :: proc{
    	internal_int_sqrmod,
    }
    

    internal_sqrt ¶

    internal_sqrt :: proc{
    	internal_int_sqrt,
    }
    

    internal_submod ¶

    internal_submod :: proc{
    	internal_int_submod,
    }
    

    internal_xor ¶

    internal_xor :: proc{
    	internal_int_xor,
    }
    

    internal_zero ¶

    internal_zero :: proc{
    	internal_int_clear,
    }
    

    internal_zero_unused ¶

    internal_zero_unused :: proc{
    	internal_int_zero_unused,
    }
    

    is_initialized ¶

    is_initialized :: proc{
    	int_is_initialized,
    }
    

    is_odd ¶

    is_odd :: proc{
    	int_is_odd,
    	rat_is_odd,
    }
    

    lcm ¶

    lcm :: proc{
    	int_lcm,
    }
    

    less_than_abs ¶

    less_than_abs :: proc{
    	int_less_than_abs,
    }
    

    log ¶

    log :: proc{
    	int_log,
    	digit_log,
    }
    

    lt_abs ¶

    lt_abs :: proc{
    	int_less_than_abs,
    }
    

    minus_inf ¶

    minus_inf :: proc{
    	int_inf,
    }
    

    minus_one ¶

    minus_one :: proc{
    	int_minus_one,
    }
    

    mod_bits ¶

    mod_bits :: proc{
    	int_mod_bits,
    }
    

    mulmod ¶

    mulmod :: proc{
    	int_mulmod,
    }
    

    nan ¶

    nan :: proc{
    	int_nan,
    }
    

    neg ¶

    neg :: proc{
    	int_neg,
    	rat_neg,
    }
    

    one ¶

    one :: proc{
    	int_one,
    }
    

    random ¶

    random :: proc{
    	int_random,
    }
    

    root_n ¶

    root_n :: proc{
    	int_root_n,
    }
    

    shl ¶

    shl :: proc{
    	int_shl,
    }
    

    shl1 ¶

    shl1 :: proc{
    	int_double,
    }
    

    shr ¶

    shr :: proc{
    	int_shr,
    }
    

    shr1 ¶

    shr1 :: proc{
    	int_halve,
    }
    

    shr_signed ¶

    shr_signed :: proc{
    	int_shr_signed,
    }
    

    shrmod ¶

    shrmod :: proc{
    	int_shrmod,
    }
    

    sqr ¶

    sqr :: proc{
    	int_sqr,
    	rat_sqr,
    }
    

    sqrmod ¶

    sqrmod :: proc{
    	int_sqrmod,
    }
    

    sqrt ¶

    sqrt :: proc{
    	int_sqrt,
    }
    

    sub ¶

     

    err = sub(dest, a, b);

    submod ¶

    submod :: proc{
    	int_submod,
    }
    

    swap ¶

    swap :: proc{
    	int_swap,
    	rat_swap,
    }
    

    zero ¶

    zero :: proc{
    	int_clear,
    }
    

    Source Files

    Generation Information

    Generated with odin version dev-2025-10 (vendor "odin") Windows_amd64 @ 2025-10-28 21:13:04.383423800 +0000 UTC