package core:math/big

⌘K
Ctrl+K
or
/

    Overview

    Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
    Made available under Odin's BSD-3 license.
    
    This file collects public proc maps and their aliases.
    
    Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
    Made available under Odin's BSD-3 license.
    
    

    A BigInt implementation in Odin. For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3. The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.

    Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
    Made available under Odin's BSD-3 license.
    
    Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
    Made available under Odin's BSD-3 license.
    
    ==========================    Low-level routines    ==========================
    
    IMPORTANT: `internal_*` procedures make certain assumptions about their input.
    
    The public functions that call them are expected to satisfy their sanity check requirements.
    This allows `internal_*` call `internal_*` without paying this overhead multiple times.
    
    Where errors can occur, they are of course still checked and returned as appropriate.
    
    When importing `math:core/big` to implement an involved algorithm of your own, you are welcome
    to use these procedures instead of their public counterparts.
    
    Most inputs and outputs are expected to be passed an initialized `Int`, for example.
    Exceptions include `quotient` and `remainder`, which are allowed to be `nil` when the calling code doesn't need them.
    
    Check the comments above each `internal_*` implementation to see what constraints it expects to have met.
    
    We pass the custom allocator to procedures by default using the pattern `context.allocator = allocator`.
    This way we don't have to add `, allocator` at the end of each call.
    
    TODO: Handle +/- Infinity and NaN.
    
    Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
    Made available under Odin's BSD-3 license.
    
    An arbitrary precision mathematics implementation in Odin.
    For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
    The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
    
    This file contains logical operations like `and`, `or` and `xor`.
    
    Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
    Made available under Odin's BSD-3 license.
    
    An arbitrary precision mathematics implementation in Odin.
    For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
    The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
    
    This file contains prime finding operations.
    
    Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
    Made available under Odin's BSD-3 license.
    
    An arbitrary precision mathematics implementation in Odin.
    For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
    The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
    
    =============================    Private procedures    =============================
    
    Private procedures used by the above low-level routines follow.
    
    Don't call these yourself unless you really know what you're doing.
    They include implementations that are optimimal for certain ranges of input only.
    
    These aren't exported for the same reasons.
    
    Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
    Made available under Odin's BSD-3 license.
    
    An arbitrary precision mathematics implementation in Odin.
    For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
    The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
    
    This file contains basic arithmetic operations like `add`, `sub`, `mul`, `div`, ...
    
    Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
    Made available under Odin's BSD-3 license.
    
    An arbitrary precision mathematics implementation in Odin.
    For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
    The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
    
    This file contains radix conversions, `string_to_int` (atoi) and `int_to_string` (itoa).
    
    TODO:
    	- Use Barrett reduction for non-powers-of-two.
    	- Also look at extracting and splatting several digits at once.
    

    Index

    Procedures (320)
    Procedure Groups (188)

    Types

    DIGIT ¶

    DIGIT :: distinct u64
     

    We can use u128 as an intermediary.

    Related Procedures With Parameters
    Related Procedures With Returns

    Endianness ¶

    Endianness :: enum i8 {
    	Little   = -1, 
    	Platform = 0, 
    	Big      = 1, 
    }

    Error ¶

    Error :: enum int {
    	Okay                    = 0, 
    	Out_Of_Memory           = 1, 
    	Invalid_Pointer         = 2, 
    	Invalid_Argument        = 3, 
    	Assignment_To_Immutable = 10, 
    	Max_Iterations_Reached  = 11, 
    	Buffer_Overflow         = 12, 
    	Integer_Overflow        = 13, 
    	Integer_Underflow       = 14, 
    	Division_by_Zero        = 30, 
    	Math_Domain_Error       = 31, 
    	Cannot_Open_File        = 50, 
    	Cannot_Read_File        = 51, 
    	Cannot_Write_File       = 52, 
    	Unimplemented           = 127, 
    }
     

    Errors are a strict superset of runtime.Allocation_Error.

    Related Procedures With Returns

    Flag ¶

    Flag :: enum u8 {
    	NaN, 
    	Inf, 
    	Immutable, 
    }

    Flags ¶

    Flags :: bit_set[Flag; u8]

    Int ¶

    Int :: struct {
    	used:  int,
    	digit: [dynamic]DIGIT,
    	sign:  Sign,
    	flags: bit_set[Flag; u8],
    }
    Related Procedures With Parameters

    Order ¶

    Order :: enum i8 {
    	LSB_First = -1, 
    	MSB_First = 1, 
    }
    Related Procedures With Parameters

    Primality_Flag ¶

    Primality_Flag :: enum u8 {
    	Blum_Blum_Shub = 0, // Make prime congruent to 3 mod 4
    	Safe           = 1, // Make sure (p-1)/2 is prime as well (implies .Blum_Blum_Shub)
    	Second_MSB_On  = 3, // Make the 2nd highest bit one
    }

    Primality_Flags ¶

    Primality_Flags :: bit_set[Primality_Flag; u8]

    Rat ¶

    Rat :: struct {
    	a: Int,
    	b: Int,
    }
    Related Procedures With Parameters

    Sign ¶

    Sign :: enum u8 {
    	Zero_or_Positive = 0, 
    	Negative         = 1, 
    }
    Related Procedures With Returns

    Constants

    Error_String ¶

    Error_String: [Error]string : #sparse[Error]string{.Okay = "Okay", .Out_Of_Memory = "Out of memory", .Invalid_Pointer = "Invalid pointer", .Invalid_Argument = "Invalid argument", .Assignment_To_Immutable = "Assignment to immutable", .Max_Iterations_Reached = "Max iterations reached", .Buffer_Overflow = "Buffer overflow", .Integer_Overflow = "Integer overflow", .Integer_Underflow = "Integer underflow", .Division_by_Zero = "Division by zero", .Math_Domain_Error = "Math domain error", .Cannot_Open_File = "Cannot_Open_File", .Cannot_Read_File = "Cannot_Read_File", .Cannot_Write_File = "Cannot_Write_File", .Unimplemented = "Unimplemented"}

    MATH_BIG_FORCE_32_BIT ¶

    MATH_BIG_FORCE_32_BIT :: #config(MATH_BIG_FORCE_32_BIT, false)

    MATH_BIG_FORCE_64_BIT ¶

    MATH_BIG_FORCE_64_BIT :: #config(MATH_BIG_FORCE_64_BIT, false)
     

    We don't allow these to be switched at runtime for two reasons:

    1) 32-bit and 64-bit versions of procedures use different types for their storage,

    so we'd have to double the number of procedures, and they couldn't interact.
    
    

    2) Optimizations thanks to precomputed masks wouldn't work.

    MATH_BIG_USE_FROBENIUS_TEST ¶

    MATH_BIG_USE_FROBENIUS_TEST :: !MATH_BIG_USE_LUCAS_SELFRIDGE_TEST

    MATH_BIG_USE_LUCAS_SELFRIDGE_TEST ¶

    MATH_BIG_USE_LUCAS_SELFRIDGE_TEST :: #config(MATH_BIG_USE_LUCAS_SELFRIDGE_TEST, false)
     

    internal_int_is_prime switchables.

    Use Frobenius-Underwood for primality testing, or use Lucas-Selfridge (default).

    RADIX_TABLE_REVERSE_SIZE ¶

    RADIX_TABLE_REVERSE_SIZE :: 80

    Variables

    FACTORIAL_BINARY_SPLIT_CUTOFF ¶

    FACTORIAL_BINARY_SPLIT_CUTOFF: int = …
     

    Cutoff to switch to int_factorial_binary_split, and its max recursion level.

    FACTORIAL_BINARY_SPLIT_MAX_RECURSIONS ¶

    FACTORIAL_BINARY_SPLIT_MAX_RECURSIONS: int = …

    FACTORIAL_MAX_N ¶

    FACTORIAL_MAX_N: int = …
     

    Largest N for which we'll compute N!

    INT_INF ¶

    INT_INF: ^Int = …
     

    Initialize constants.

    INT_MINUS_INF ¶

    INT_MINUS_INF: ^Int = …
     

    Initialize constants.

    INT_MINUS_ONE ¶

    INT_MINUS_ONE: ^Int = …
     

    Initialize constants.

    INT_NAN ¶

    INT_NAN: ^Int = …
     

    Initialize constants.

    INT_ONE ¶

    INT_ONE: ^Int = …
     

    Initialize constants.

    INT_ZERO ¶

    INT_ZERO: ^Int = …
     

    Initialize constants.

    MAX_ITERATIONS_RANDOM_PRIME ¶

    MAX_ITERATIONS_RANDOM_PRIME: int = …
     

    How many times we'll call internal_int_random during random prime generation before we bail out. Set to 0 or less to try indefinitely.

    MAX_ITERATIONS_ROOT_N ¶

    MAX_ITERATIONS_ROOT_N: int = …

    MUL_KARATSUBA_CUTOFF ¶

    MUL_KARATSUBA_CUTOFF: int = …

    MUL_TOOM_CUTOFF ¶

    MUL_TOOM_CUTOFF: int = …

    RADIX_TABLE ¶

    RADIX_TABLE: string = …
     

    Characters used in radix conversions.

    RADIX_TABLE_REVERSE ¶

    RADIX_TABLE_REVERSE: [80]u8 = …

    RANDOM_PRIME_ITERATIONS_USED ¶

    @(thread_local)
    RANDOM_PRIME_ITERATIONS_USED: int
     

    How many iterations we used for the last random prime.

    SQR_KARATSUBA_CUTOFF ¶

    SQR_KARATSUBA_CUTOFF: int = …

    SQR_TOOM_CUTOFF ¶

    SQR_TOOM_CUTOFF: int = …

    USE_MILLER_RABIN_ONLY ¶

    USE_MILLER_RABIN_ONLY: bool = …
     

    Runtime tunable to use Miller-Rabin primality testing only and skip the above.

    Procedures

    assert_if_nil_int ¶

    assert_if_nil_int :: proc(.. integers: ..^Int, loc := #caller_location) {…}

    assert_if_nil_rat ¶

    assert_if_nil_rat :: proc(.. rationals: ..^Rat, loc := #caller_location) {…}

    assert_initialized ¶

    assert_initialized :: proc(a: ^Int, loc := #caller_location) {…}
     

    Internal helpers.

    clamp ¶

    clamp :: proc(a: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Trim unused digits.

    This is used to ensure that leading zero digits are trimmed and the leading "used" digit will be non-zero. Typically very fast. Also fixes the sign if there are no more leading digits.

    clear_if_uninitialized_multi ¶

    clear_if_uninitialized_multi :: proc(.. args: ..^Int, allocator := context.allocator) -> (err: Error) {…}

    clear_if_uninitialized_single ¶

    clear_if_uninitialized_single :: proc(arg: ^Int, allocator := context.allocator) -> (err: Error) {…}

    combinations_with_repetition ¶

    combinations_with_repetition :: proc(dest: ^Int, n, r: int) -> (error: Error) {…}
     

    With n items, calculate how many ways that r of them can be chosen.

    Also known as the multiset coefficient or (n multichoose k).

    combinations_without_repetition ¶

    combinations_without_repetition :: proc(dest: ^Int, n, r: int) -> (error: Error) {…}
     

    With n items, calculate how many ways that r of them can be chosen without any repeats.

    Also known as the binomial coefficient or (n choose k).

    copy_digits ¶

    copy_digits :: proc(dest, src: ^Int, digits: int, offset: int = int(0), allocator := context.allocator) -> (err: Error) {…}

    count_bits ¶

    count_bits :: proc(a: ^Int, allocator := context.allocator) -> (count: int, err: Error) {…}
     

    Count bits in an Int.

    destroy_constants ¶

    destroy_constants :: proc() {…}
     

    Destroy constants. Optional for an EXE, as this would be called at the very end of a process.

    digit_log ¶

    digit_log :: proc(a: DIGIT, base: DIGIT) -> (log: int, err: Error) {…}

    error_if_immutable_multi ¶

    error_if_immutable_multi :: proc(.. args: ..^Int) -> (err: Error) {…}

    error_if_immutable_single ¶

    error_if_immutable_single :: proc(arg: ^Int) -> (err: Error) {…}

    ilog2 ¶

    ilog2 :: proc(value: $T) -> (log2: $T) {…}

    initialize_constants ¶

    initialize_constants :: proc() -> (res: int) {…}

    int_abs ¶

    int_abs :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Set dest to |src|.

    int_add ¶

    int_add :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    High-level addition. Handles sign.

    int_add_digit ¶

    int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {…}
     

    Adds the unsigned DIGIT immediate to an Int, such that the DIGIT doesn't have to be turned into an Int first.

    dest = a + digit;

    int_add_rat ¶

    int_add_rat :: proc(dst: ^Rat, x: ^Int, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}

    int_addmod ¶

    int_addmod :: proc(remainder, number, addend, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number + addend) % modulus.

    int_atoi ¶

    int_atoi :: proc(res: ^Int, input: string, radix: i8 = i8(10), allocator := context.allocator) -> (err: Error) {…}
     

    Read a string [ASCII] in a given radix.

    int_bit_and ¶

    int_bit_and :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    2's complement and, returns dest = a & b;

    int_bit_complement ¶

    int_bit_complement :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    dest = ~src

    int_bit_or ¶

    int_bit_or :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    2's complement or, returns dest = a | b;

    int_bit_xor ¶

    int_bit_xor :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    2's complement xor, returns dest = a ^ b;

    int_bitfield_extract ¶

    int_bitfield_extract :: proc(a: ^Int, offset, count: int, allocator := context.allocator) -> (res: _WORD, err: Error) {…}

    int_bitfield_extract_single ¶

    int_bitfield_extract_single :: proc(a: ^Int, offset: int, allocator := context.allocator) -> (bit: _WORD, err: Error) {…}
     

    Helpers to extract values from the Int.

    int_choose_digit ¶

    int_choose_digit :: proc(res: ^Int, n, k: int, allocator := context.allocator) -> (err: Error) {…}
     

    Number of ways to choose k items from n items. Also known as the binomial coefficient.

    TODO: Speed up.

    Could be done faster by reusing code from factorial and reusing the common "prefix" results for n!, k! and n-k! We know that n >= k, otherwise we early out with res = 0.

    So:

    n-k, keep result
    n, start from previous result
    k, start from previous result
    

    int_clear ¶

    int_clear :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Clear Int and resize it to the default size.

    int_cmp ¶

    int_cmp :: int_compare
     

    Compare two Ints, signed.

    int_cmp_digit ¶

    int_cmp_digit :: int_compare_digit
     

    Compare an Int to an unsigned number upto the size of the backing type.

    int_cmp_mag ¶

    int_cmp_mag :: int_compare_magnitude
     

    Compare the magnitude of two Ints, unsigned.

    int_compare ¶

    int_compare :: proc(a, b: ^Int, allocator := context.allocator) -> (comparison: int, err: Error) {…}
     

    Compare two Ints, signed.

    int_compare_digit ¶

    int_compare_digit :: proc(a: ^Int, b: DIGIT, allocator := context.allocator) -> (comparison: int, err: Error) {…}
     

    Compare an Int to an unsigned number upto the size of the backing type.

    int_compare_magnitude ¶

    int_compare_magnitude :: proc(a, b: ^Int, allocator := context.allocator) -> (res: int, err: Error) {…}
     

    Compare the magnitude of two Ints, unsigned.

    int_copy ¶

    int_copy :: proc(dest, src: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Copy one Int to another.

    int_count_lsb ¶

    int_count_lsb :: proc(a: ^Int, allocator := context.allocator) -> (count: int, err: Error) {…}
     

    Returns the number of trailing zeroes before the first one. Differs from regular ctz in that 0 returns 0.

    int_destroy ¶

    int_destroy :: proc(.. integers: ..^Int) {…}
     

    Deallocates the backing memory of one or more Ints.

    int_div ¶

    int_div :: proc(quotient, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {…}

    int_div_digit ¶

    int_div_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (err: Error) {…}

    int_div_rat ¶

    int_div_rat :: proc(dst: ^Rat, x: ^Int, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}

    int_divmod ¶

    int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    divmod. Both the quotient and remainder are optional and may be passed a nil.

    int_divmod_digit ¶

    int_divmod_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {…}

    int_double ¶

    int_double :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    dest = src * 2 dest = src << 1

    int_equals ¶

    int_equals :: proc(a, b: ^Int, allocator := context.allocator) -> (equals: bool, err: Error) {…}
     

    bool := a == b

    int_equals_abs ¶

    int_equals_abs :: proc(a, b: ^Int, allocator := context.allocator) -> (equals: bool, err: Error) {…}
     
    bool := |a| == |b|
    

    Compares the magnitudes only, ignores the sign.

    int_equals_digit ¶

    int_equals_digit :: proc(a: ^Int, b: DIGIT, allocator := context.allocator) -> (equals: bool, err: Error) {…}
     

    bool := a == b

    int_factorial ¶

    int_factorial :: proc(res: ^Int, n: int, allocator := context.allocator) -> (err: Error) {…}

    int_from_bytes_big ¶

    int_from_bytes_big :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Read Int from a Big Endian binary representation. Sign is detected from the first byte if signed is true.

    int_from_bytes_big_python ¶

    int_from_bytes_big_python :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Read Int from a Big Endian Python binary representation. Sign is detected from the first byte if signed is true.

    int_from_bytes_little ¶

    int_from_bytes_little :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Read Int from a Little Endian binary representation. Sign is detected from the last byte if signed is true.

    int_from_bytes_little_python ¶

    int_from_bytes_little_python :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Read Int from a Little Endian Python binary representation. Sign is detected from the first byte if signed is true.

    int_gcd ¶

    int_gcd :: proc(res, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Greatest Common Divisor.

    int_gcd_lcm ¶

    int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Function computing both GCD and (if target isn't nil) also LCM.

    int_get ¶

    int_get :: proc(a: ^Int, $T: typeid, allocator := context.allocator) -> (res: typeid, err: Error) {…}
     

    TODO: Think about using count_bits to check if the value could be returned completely, and maybe return max(T), .Integer_Overflow if not?

    int_get_float ¶

    int_get_float :: proc(a: ^Int, allocator := context.allocator) -> (res: f64, err: Error) {…}

    int_get_i128 ¶

    int_get_i128 :: proc(a: ^Int, allocator := context.allocator) -> (res: i128, err: Error) {…}

    int_get_i32 ¶

    int_get_i32 :: proc(a: ^Int, allocator := context.allocator) -> (res: i32, err: Error) {…}

    int_get_i64 ¶

    int_get_i64 :: proc(a: ^Int, allocator := context.allocator) -> (res: i64, err: Error) {…}

    int_get_u128 ¶

    int_get_u128 :: proc(a: ^Int, allocator := context.allocator) -> (res: u128, err: Error) {…}

    int_get_u32 ¶

    int_get_u32 :: proc(a: ^Int, allocator := context.allocator) -> (res: u32, err: Error) {…}

    int_get_u64 ¶

    int_get_u64 :: proc(a: ^Int, allocator := context.allocator) -> (res: u64, err: Error) {…}

    int_greater_than ¶

    int_greater_than :: proc(a, b: ^Int, allocator := context.allocator) -> (greater_than: bool, err: Error) {…}
     

    bool := a > b

    int_greater_than_abs ¶

    int_greater_than_abs :: proc(a, b: ^Int, allocator := context.allocator) -> (greater_than: bool, err: Error) {…}
     
    bool := |a| > |b|
    

    Compares the magnitudes only, ignores the sign.

    int_greater_than_digit ¶

    int_greater_than_digit :: proc(a: ^Int, b: DIGIT, allocator := context.allocator) -> (greater_than: bool, err: Error) {…}
     

    bool := a > b

    int_greater_than_or_equal ¶

    int_greater_than_or_equal :: proc(a, b: ^Int, allocator := context.allocator) -> (greater_than_or_equal: bool, err: Error) {…}
     

    bool := a >= b

    int_greater_than_or_equal_abs ¶

    int_greater_than_or_equal_abs :: proc(a, b: ^Int, allocator := context.allocator) -> (greater_than_or_equal: bool, err: Error) {…}
     
    bool := |a| >= |b|
    

    Compares the magnitudes only, ignores the sign.

    int_greater_than_or_equal_digit ¶

    int_greater_than_or_equal_digit :: proc(a: ^Int, b: DIGIT, allocator := context.allocator) -> (greater_than_or_equal: bool, err: Error) {…}
     

    bool := a >= b

    int_grow ¶

    int_grow :: proc(a: ^Int, digits: int, allow_shrink: bool = false, allocator := context.allocator) -> (err: Error) {…}

    int_halve ¶

    int_halve :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    dest = src / 2 dest = src >> 1

    int_inf ¶

    int_inf :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to Inf and optionally shrink it to the minimum backing size.

    int_init_multi ¶

    int_init_multi :: proc(.. integers: ..^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Allocates several Ints at once.

    int_is_even ¶

    int_is_even :: proc(a: ^Int, allocator := context.allocator) -> (even: bool, err: Error) {…}

    int_is_initialized ¶

    int_is_initialized :: proc(a: ^Int) -> bool {…}

    int_is_negative ¶

    int_is_negative :: proc(a: ^Int, allocator := context.allocator) -> (negative: bool, err: Error) {…}

    int_is_odd ¶

    int_is_odd :: proc(a: ^Int, allocator := context.allocator) -> (odd: bool, err: Error) {…}

    int_is_positive ¶

    int_is_positive :: proc(a: ^Int, allocator := context.allocator) -> (positive: bool, err: Error) {…}

    int_is_power_of_two ¶

    int_is_power_of_two :: proc(a: ^Int, allocator := context.allocator) -> (res: bool, err: Error) {…}

    int_is_square ¶

    int_is_square :: proc(a: ^Int, allocator := context.allocator) -> (square: bool, err: Error) {…}
     

    Check if remainders are possible squares - fast exclude non-squares.

    Returns true if a is a square, false if not. Assumes a not to be nil and to have been initialized.

    int_is_zero ¶

    int_is_zero :: proc(a: ^Int, allocator := context.allocator) -> (zero: bool, err: Error) {…}

    int_itoa_cstring ¶

    int_itoa_cstring :: proc(a: ^Int, radix: i8 = i8(10), allocator := context.allocator) -> (res: cstring, err: Error) {…}
     

    This version of itoa allocates on behalf of the caller. The caller must free the string. The radix defaults to 10.

    int_itoa_raw ¶

    int_itoa_raw :: proc(a: ^Int, radix: i8, buffer: []u8, size: int = int(-1), zero_terminate: bool = false) -> (written: int, err: Error) {…}
     

    A low-level itoa using a caller-provided buffer. itoa_string and itoa_cstring use this. You can use also use it if you want to pre-allocate a buffer and optionally reuse it.

    Use radix_size or radix_size_estimate to determine a buffer size big enough.

    You can pass the output of radix_size to size if you've previously called it to size the output buffer. If you haven't, this routine will call it. This way it knows if the buffer is the appropriate size, and we can write directly in place without a reverse step at the end.

    			=== === === IMPORTANT === === ===
    
    

    If you determined the buffer size using radix_size_estimate, or have a buffer that you reuse that you know is large enough, don't pass this size unless you know what you are doing, because we will always write backwards starting at last byte of the buffer.

    Keep in mind that if you set size yourself and it's smaller than the buffer, it'll result in buffer overflows, as we use it to avoid reversing at the end and having to perform a buffer overflow check each character.

    int_itoa_string ¶

    int_itoa_string :: proc(a: ^Int, radix: i8 = i8(10), zero_terminate: bool = false, allocator := context.allocator) -> (res: string, err: Error) {…}
     

    This version of itoa allocates on behalf of the caller. The caller must free the string. The radix defaults to 10.

    int_lcm ¶

    int_lcm :: proc(res, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Least Common Multiple.

    int_less_than ¶

    int_less_than :: proc(a, b: ^Int, allocator := context.allocator) -> (less_than: bool, err: Error) {…}
     

    bool := a < b

    int_less_than_abs ¶

    int_less_than_abs :: proc(a, b: ^Int, allocator := context.allocator) -> (less_than: bool, err: Error) {…}
     
    bool := |a| < |b|
    

    Compares the magnitudes only, ignores the sign.

    int_less_than_digit ¶

    int_less_than_digit :: proc(a: ^Int, b: DIGIT, allocator := context.allocator) -> (less_than: bool, err: Error) {…}
     

    bool := a < b

    int_less_than_or_equal ¶

    int_less_than_or_equal :: proc(a, b: ^Int, allocator := context.allocator) -> (less_than_or_equal: bool, err: Error) {…}
     

    bool := a <= b

    int_less_than_or_equal_abs ¶

    int_less_than_or_equal_abs :: proc(a, b: ^Int, allocator := context.allocator) -> (less_than_or_equal: bool, err: Error) {…}
     
    bool := |a| <= |b|
    

    Compares the magnitudes only, ignores the sign.

    int_less_than_or_equal_digit ¶

    int_less_than_or_equal_digit :: proc(a: ^Int, b: DIGIT, allocator := context.allocator) -> (less_than_or_equal: bool, err: Error) {…}
     

    bool := a <= b

    int_log ¶

    int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -> (res: int, err: Error) {…}
     

    Logs and roots and such.

    int_minus_inf ¶

    int_minus_inf :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to -Inf and optionally shrink it to the minimum backing size.

    int_minus_one ¶

    int_minus_one :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to -1 and optionally shrink it to the minimum backing size.

    int_mod ¶

    int_mod :: proc(remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = numerator % denominator. 0 <= remainder < denominator if denominator > 0 denominator < remainder <= 0 if denominator < 0

    int_mod_bits ¶

    int_mod_bits :: proc(remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = numerator % (1 << bits)

    int_mod_digit ¶

    int_mod_digit :: proc(numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {…}

    int_mul ¶

    int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    High level multiplication (handles sign).

    int_mul_digit ¶

    int_mul_digit :: proc(dest, src: ^Int, multiplier: DIGIT, allocator := context.allocator) -> (err: Error) {…}
     

    Multiply by a DIGIT.

    int_mul_rat ¶

    int_mul_rat :: proc(dst: ^Rat, x: ^Int, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}

    int_mulmod ¶

    int_mulmod :: proc(remainder, number, multiplicand, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number * multiplicand) % modulus.

    int_nan ¶

    int_nan :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to NaN and optionally shrink it to the minimum backing size.

    int_neg ¶

    int_neg :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Set dest to -src.

    int_one ¶

    int_one :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to 1 and optionally shrink it to the minimum backing size.

    int_pow ¶

    int_pow :: proc(dest, base: ^Int, power: int, allocator := context.allocator) -> (err: Error) {…}
     

    Calculate dest = base^power using a square-multiply algorithm.

    int_pow_int ¶

    int_pow_int :: proc(dest: ^Int, base, power: int, allocator := context.allocator) -> (err: Error) {…}
     

    Calculate dest = base^power using a square-multiply algorithm.

    int_random ¶

    int_random :: proc(dest: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}

    int_random_digit ¶

    int_random_digit :: proc() -> (res: DIGIT) {…}

    int_root_n ¶

    int_root_n :: proc(dest, src: ^Int, n: int, allocator := context.allocator) -> (err: Error) {…}
     

    Find the nth root of an Integer. Result found such that (dest)**n <= src and (dest+1)**n > src

    This algorithm uses Newton's approximation x[i+1] = x[i] - f(x[i])/f'(x[i]), which will find the root in log(n) time where each step involves a fair bit.

    int_set_from_integer ¶

    int_set_from_integer :: proc(dest: ^Int, src: $T, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Helpers to set an Int to a specific value.

    int_shl ¶

    int_shl :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    Shift left by a certain bit count.

    int_shr ¶

    int_shr :: proc(dest, source: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}

    int_shr_signed ¶

    int_shr_signed :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    Shift right by a certain bit count with sign extension.

    int_shrmod ¶

    int_shrmod :: proc(quotient, remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    quotient, remainder := numerator >> bits; remainder is allowed to be passed a nil, in which case mod won't be computed.

    int_sqr ¶

    int_sqr :: proc(dest, src: ^Int) -> (err: Error) {…}

    int_sqrmod ¶

    int_sqrmod :: proc(remainder, number, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number * number) % modulus.

    int_sqrt ¶

    int_sqrt :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    This function is less generic than root_n, simpler and faster.

    int_sub ¶

    int_sub :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    High-level subtraction, dest = number - decrease. Handles signs.

    int_sub_digit ¶

    int_sub_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {…}
     

    Adds the unsigned DIGIT immediate to an Int, such that the DIGIT doesn't have to be turned into an Int first.

    dest = a - digit;

    int_sub_rat ¶

    int_sub_rat :: proc(dst: ^Rat, x: ^Int, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}

    int_submod ¶

    int_submod :: proc(remainder, number, decrease, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number - decrease) % modulus.

    int_swap ¶

    int_swap :: proc(a, b: ^Int) {…}
     

    In normal code, you can also write a, b = b, a. However, that only swaps within the current scope. This helper swaps completely.

    int_to_bytes_big ¶

    int_to_bytes_big :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Return Big Endian binary representation of a, either signed or unsigned. If a is negative and we ask for the default unsigned representation, we return abs(a).

    int_to_bytes_big_python ¶

    int_to_bytes_big_python :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Return Python 3.x compatible Big Endian binary representation of a, either signed or unsigned. If a is negative when asking for an unsigned number, we return an error like Python does.

    int_to_bytes_little ¶

    int_to_bytes_little :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Return Little Endian binary representation of a, either signed or unsigned. If a is negative and we ask for the default unsigned representation, we return abs(a).

    int_to_bytes_little_python ¶

    int_to_bytes_little_python :: proc(a: ^Int, buf: []u8, signed: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Return Python 3.x compatible Little Endian binary representation of a, either signed or unsigned. If a is negative when asking for an unsigned number, we return an error like Python does.

    int_to_bytes_size ¶

    int_to_bytes_size :: proc(a: ^Int, signed: bool = false, allocator := context.allocator) -> (size_in_bytes: int, err: Error) {…}
     

    Size binary representation

    int_to_cstring ¶

    int_to_cstring :: int_itoa_cstring
     

    This version of itoa allocates on behalf of the caller. The caller must free the string. The radix defaults to 10.

    int_to_string ¶

    int_to_string :: int_itoa_string
     

    This version of itoa allocates on behalf of the caller. The caller must free the string. The radix defaults to 10.

    internal_assert_initialized ¶

    internal_assert_initialized :: proc(a: ^Int, loc := #caller_location) {…}
     

    Internal helpers.

    internal_clamp ¶

    internal_clamp :: proc(a: ^Int) -> (err: Error) {…}
     

    Trim unused digits.

    This is used to ensure that leading zero digits are trimmed and the leading "used" digit will be non-zero. Typically very fast. Also fixes the sign if there are no more leading digits.

    internal_clear_if_uninitialized_multi ¶

    internal_clear_if_uninitialized_multi :: proc(.. args: ..^Int, allocator := context.allocator) -> (err: Error) {…}

    internal_clear_if_uninitialized_single ¶

    internal_clear_if_uninitialized_single :: proc(arg: ^Int, allocator := context.allocator) -> (err: Error) {…}

    internal_copy_digits ¶

    internal_copy_digits :: proc(dest, src: ^Int, digits: int, offset: int = int(0)) -> (err: Error) {…}

    internal_count_bits ¶

    internal_count_bits :: proc(a: ^Int) -> (count: int) {…}
     

    Count bits in an Int. Assumes a not to be nil and to have been initialized.

    internal_digit_log ¶

    internal_digit_log :: proc(a: DIGIT, base: DIGIT) -> (log: int, err: Error) {…}
     

    Returns log_base(a), where a is a DIGIT.

    internal_error_if_immutable_multi ¶

    internal_error_if_immutable_multi :: proc(.. args: ..^Int) -> (err: Error) {…}

    internal_error_if_immutable_single ¶

    internal_error_if_immutable_single :: proc(arg: ^Int) -> (err: Error) {…}

    internal_get_low_u32 ¶

    internal_get_low_u32 :: proc(a: ^Int) -> u32 {…}

    internal_get_low_u64 ¶

    internal_get_low_u64 :: proc(a: ^Int) -> u64 {…}

    internal_int_abs ¶

    internal_int_abs :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Set dest to |src|.

    internal_int_add_digit ¶

    internal_int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {…}
     

    Low-level addition Int+DIGIT, signed. Handbook of Applied Cryptography, algorithm 14.7.

    Assumptions:

    `dest` and `a` != `nil` and have been initalized.
    `dest` is large enough (a.used + 1) to fit result.
    

    internal_int_add_signed ¶

    internal_int_add_signed :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Low-level addition, signed. Handbook of Applied Cryptography, algorithm 14.7.

    Assumptions:

    `dest`, `a` and `b` != `nil` and have been initalized.
    

    internal_int_add_unsigned ¶

    internal_int_add_unsigned :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Low-level addition, unsigned. Handbook of Applied Cryptography, algorithm 14.7.

    Assumptions:

    `dest`, `a` and `b` != `nil` and have been initalized.
    

    internal_int_addmod ¶

    internal_int_addmod :: proc(remainder, number, addend, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number + addend) % modulus.

    internal_int_allocated_cap ¶

    internal_int_allocated_cap :: proc(a: ^Int) -> (cap: int) {…}
     

    This procedure returns the allocated capacity of an Int. Assumes a not to be nil.

    internal_int_and ¶

    internal_int_and :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    2's complement and, returns dest = a & b;

    internal_int_bitfield_extract ¶

    internal_int_bitfield_extract :: proc(a: ^Int, offset, count: int) -> (res: _WORD, err: Error) {…}

    internal_int_bitfield_extract_bool ¶

    internal_int_bitfield_extract_bool :: proc(a: ^Int, offset: int) -> (val: bool, err: Error) {…}
     

    Helpers to extract values from the Int. Offset is zero indexed.

    internal_int_bitfield_extract_single ¶

    internal_int_bitfield_extract_single :: proc(a: ^Int, offset: int) -> (bit: _WORD, err: Error) {…}

    internal_int_bitfield_set_single ¶

    internal_int_bitfield_set_single :: proc(a: ^Int, offset: int) -> (err: Error) {…}
     

    Helpers to (un)set a bit in an Int. Offset is zero indexed.

    internal_int_bitfield_toggle_single ¶

    internal_int_bitfield_toggle_single :: proc(a: ^Int, offset: int) -> (err: Error) {…}

    internal_int_bitfield_unset_single ¶

    internal_int_bitfield_unset_single :: proc(a: ^Int, offset: int) -> (err: Error) {…}

    internal_int_clear ¶

    internal_int_clear :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Clear Int and resize it to the default size. Assumes a not to be nil.

    internal_int_compare ¶

    internal_int_compare :: proc(a, b: ^Int) -> (comparison: int) {…}
     

    Compare two Ints, signed. Returns -1 if a < b, 0 if a == b and 1 if b > a.

    Expects a and b both to be valid Ints, i.e. initialized and not nil.

    internal_int_compare_digit ¶

    internal_int_compare_digit :: proc(a: ^Int, b: DIGIT) -> (comparison: int) {…}
     

    Compare an Int to an unsigned number upto DIGIT & _MASK. Returns -1 if a < b, 0 if a == b and 1 if b > a.

    Expects: a and b both to be valid Ints, i.e. initialized and not nil.

    internal_int_compare_magnitude ¶

    internal_int_compare_magnitude :: proc(a, b: ^Int) -> (comparison: int) {…}
     

    Compare the magnitude of two Ints, unsigned.

    internal_int_complement ¶

    internal_int_complement :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    dest = ~src

    internal_int_copy ¶

    internal_int_copy :: proc(dest, src: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Copy one Int to another.

    internal_int_count_lsb ¶

    internal_int_count_lsb :: proc(a: ^Int) -> (count: int, err: Error) {…}
     

    Returns the number of trailing zeroes before the first one. Differs from regular ctz in that 0 returns 0.

    Assumes a not to be nil and have been initialized.

    internal_int_decr ¶

    internal_int_decr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_destroy ¶

    internal_int_destroy :: proc(.. integers: ..^Int) {…}
     

    Deallocates the backing memory of one or more Ints. Asssumes none of the integers to be a nil.

    internal_int_div ¶

    internal_int_div :: proc(quotient, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Asssumes quotient, numerator and denominator to have been initialized and not to be nil.

    internal_int_divmod ¶

    internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    divmod. Both the quotient and remainder are optional and may be passed a nil. numerator and denominator are expected not to be nil and have been initialized.

    internal_int_divmod_digit ¶

    internal_int_divmod_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {…}
     

    Single digit division (based on routine from MPI). The quotient is optional and may be passed a nil.

    internal_int_equals ¶

    internal_int_equals :: proc(a, b: ^Int) -> (equals: bool) {…}
     

    bool := a == b

    internal_int_equals_abs ¶

    internal_int_equals_abs :: proc(a, b: ^Int) -> (equals: bool) {…}
     
    bool := |a| == |b|
    

    Compares the magnitudes only, ignores the sign.

    internal_int_equals_digit ¶

    internal_int_equals_digit :: proc(a: ^Int, b: DIGIT) -> (equals: bool) {…}
     

    bool := a == b

    internal_int_exponent_mod ¶

    internal_int_exponent_mod :: internal_int_power_modulo
     

    This is a shell function that calls either the normal or Montgomery exptmod functions. Originally the call to the Montgomery code was embedded in the normal function but that wasted alot of stack space for nothing (since 99% of the time the Montgomery code would be called).

    Computes res == G**X mod P. Assumes res, G, X and P to not be nil and for G, X and P to have been initialized.

    internal_int_extended_euclidean ¶

    internal_int_extended_euclidean :: proc(
    	a, b, U1, U2, U3: ^Int, 
    	allocator := context.allocator, 
    ) -> (err: Error) {…}
     

    Extended Euclidean algorithm of (a, b) produces a * u1 + b * u2 = u3.

    internal_int_factorial ¶

    internal_int_factorial :: proc(res: ^Int, n: int, allocator := context.allocator) -> (err: Error) {…}
     

    TODO: Use Sterling's Approximation to estimate log2(N!) to size the result. This way we'll have to reallocate less, possibly not at all.

    internal_int_gcd ¶

    internal_int_gcd :: proc(res_gcd, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_gcd_lcm ¶

    internal_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Returns GCD, LCM or both.

    Assumes a and b to have been initialized. res_gcd and res_lcm can be nil or ^Int depending on which results are desired.

    internal_int_get ¶

    internal_int_get :: proc(a: ^Int, $T: typeid) -> (res: typeid, err: Error) {…}
     

    TODO: Think about using count_bits to check if the value could be returned completely, and maybe return max(T), .Integer_Overflow if not?

    internal_int_get_float ¶

    internal_int_get_float :: proc(a: ^Int) -> (res: f64, err: Error) {…}

    internal_int_get_i128 ¶

    internal_int_get_i128 :: proc(a: ^Int) -> (res: i128, err: Error) {…}

    internal_int_get_i32 ¶

    internal_int_get_i32 :: proc(a: ^Int) -> (res: i32, err: Error) {…}

    internal_int_get_i64 ¶

    internal_int_get_i64 :: proc(a: ^Int) -> (res: i64, err: Error) {…}

    internal_int_get_u128 ¶

    internal_int_get_u128 :: proc(a: ^Int) -> (res: u128, err: Error) {…}

    internal_int_get_u32 ¶

    internal_int_get_u32 :: proc(a: ^Int) -> (res: u32, err: Error) {…}

    internal_int_get_u64 ¶

    internal_int_get_u64 :: proc(a: ^Int) -> (res: u64, err: Error) {…}

    internal_int_greater_than ¶

    internal_int_greater_than :: proc(a, b: ^Int) -> (greater_than: bool) {…}
     

    bool := a > b

    internal_int_greater_than_abs ¶

    internal_int_greater_than_abs :: proc(a, b: ^Int) -> (greater_than: bool) {…}
     
    bool := |a| > |b|
    

    Compares the magnitudes only, ignores the sign.

    internal_int_greater_than_digit ¶

    internal_int_greater_than_digit :: proc(a: ^Int, b: DIGIT) -> (greater_than: bool) {…}
     

    bool := a > b

    internal_int_greater_than_or_equal ¶

    internal_int_greater_than_or_equal :: proc(a, b: ^Int) -> (greater_than_or_equal: bool) {…}
     

    bool := a >= b

    internal_int_greater_than_or_equal_abs ¶

    internal_int_greater_than_or_equal_abs :: proc(a, b: ^Int) -> (greater_than_or_equal: bool) {…}
     
    bool := |a| >= |b|
    

    Compares the magnitudes only, ignores the sign.

    internal_int_greater_than_or_equal_digit ¶

    internal_int_greater_than_or_equal_digit :: proc(a: ^Int, b: DIGIT) -> (greater_than_or_equal: bool) {…}
     

    bool := a >= b

    internal_int_grow ¶

    internal_int_grow :: proc(a: ^Int, digits: int, allow_shrink: bool = false, allocator := context.allocator) -> (err: Error) {…}

    internal_int_incr ¶

    internal_int_incr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_inf ¶

    internal_int_inf :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to Inf and optionally shrink it to the minimum backing size.

    internal_int_init_multi ¶

    internal_int_init_multi :: proc(.. integers: ..^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Allocates several Ints at once.

    internal_int_inverse_modulo ¶

    internal_int_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    hac 14.61, pp608.

    internal_int_invmod ¶

    internal_int_invmod :: internal_int_inverse_modulo
     

    hac 14.61, pp608.

    internal_int_is_even ¶

    internal_int_is_even :: proc(a: ^Int) -> (even: bool) {…}
     

    This procedure will return true if the Int is even, false if not. Assumes a not to be nil.

    internal_int_is_initialized ¶

    internal_int_is_initialized :: proc(a: ^Int) -> (initialized: bool) {…}
     

    This procedure will return true if the Int is initialized, false if not. Assumes a not to be nil.

    internal_int_is_negative ¶

    internal_int_is_negative :: proc(a: ^Int) -> (negative: bool) {…}
     

    This procedure will return true if the Int is negative, false if not. Assumes a not to be nil.

    internal_int_is_odd ¶

    internal_int_is_odd :: proc(a: ^Int) -> (odd: bool) {…}
     

    This procedure will return true if the Int is even, false if not. Assumes a not to be nil.

    internal_int_is_positive ¶

    internal_int_is_positive :: proc(a: ^Int) -> (positive: bool) {…}
     

    This procedure will return true if the Int is positive, false if not. Assumes a not to be nil.

    internal_int_is_power_of_two ¶

    internal_int_is_power_of_two :: proc(a: ^Int) -> (power_of_two: bool) {…}
     

    This procedure will return true if the Int is a power of two, false if not. Assumes a not to be nil.

    internal_int_is_prime ¶

    internal_int_is_prime :: proc(a: ^Int, miller_rabin_trials: int = int(-1), miller_rabin_only: bool = USE_MILLER_RABIN_ONLY, allocator := context.allocator) -> (is_prime: bool, err: Error) {…}
     

    a is the big Int to test for primality.

    miller_rabin_trials can be one of the following:

    `< 0`:	For `a` up to 3_317_044_064_679_887_385_961_981, set `miller_rabin_trials` to negative to run a predetermined
    		number of trials for a deterministic answer.
    `= 0`:	Run Miller-Rabin with bases 2, 3 and one random base < `a`. Non-deterministic.
    `> 0`:	Run Miller-Rabin with bases 2, 3 and `miller_rabin_trials` number of random bases. Non-deterministic.
    
    

    miller_rabin_only:

    `false`	Also use either Frobenius-Underwood or Lucas-Selfridge, depending on the compile-time `MATH_BIG_USE_FROBENIUS_TEST` choice.
    `true`	Run Rabin-Miller trials but skip Frobenius-Underwood / Lucas-Selfridge.
    
    

    r takes a pointer to an instance of core:math/rand's Rand and may be nil to use the global one.

    Returns is_prime (bool), where:

    `false`	Definitively composite.
    `true`	Probably prime if `miller_rabin_trials` >= 0, with increasing certainty with more trials.
    		Deterministically prime if `miller_rabin_trials` = 0 for `a` up to 3_317_044_064_679_887_385_961_981.
    
    

    Assumes a not to be nil and to have been initialized.

    internal_int_is_square ¶

    internal_int_is_square :: proc(a: ^Int, allocator := context.allocator) -> (square: bool, err: Error) {…}
     

    Check if remainders are possible squares - fast exclude non-squares.

    Returns true if a is a square, false if not. Assumes a not to be nil and to have been initialized.

    internal_int_is_zero ¶

    internal_int_is_zero :: proc(a: ^Int) -> (zero: bool) {…}
     

    This procedure will return true if the Int is zero, false if not. Assumes a not to be nil.

    internal_int_kronecker ¶

    internal_int_kronecker :: proc(a, p: ^Int, allocator := context.allocator) -> (kronecker: int, err: Error) {…}
     

    Kronecker/Legendre symbol (a|p) Straightforward implementation of algorithm 1.4.10 in Henri Cohen: "A Course in Computational Algebraic Number Theory"

    @book{cohen2013course,

    title={A course in computational algebraic number theory},
    author={Cohen, Henri},
    volume={138},
    year={2013},
    publisher={Springer Science \& Business Media}
    

    }

    Assumes a and p to not be nil and to have been initialized.

    internal_int_lcm ¶

    internal_int_lcm :: proc(res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_legendre ¶

    internal_int_legendre :: internal_int_kronecker
     

    Kronecker/Legendre symbol (a|p) Straightforward implementation of algorithm 1.4.10 in Henri Cohen: "A Course in Computational Algebraic Number Theory"

    @book{cohen2013course,

    title={A course in computational algebraic number theory},
    author={Cohen, Henri},
    volume={138},
    year={2013},
    publisher={Springer Science \& Business Media}
    

    }

    Assumes a and p to not be nil and to have been initialized.

    internal_int_less_than ¶

    internal_int_less_than :: proc(a, b: ^Int) -> (less_than: bool) {…}
     

    bool := a < b

    internal_int_less_than_abs ¶

    internal_int_less_than_abs :: proc(a, b: ^Int) -> (less_than: bool) {…}
     
    bool := |a| < |b|
    

    Compares the magnitudes only, ignores the sign.

    internal_int_less_than_digit ¶

    internal_int_less_than_digit :: proc(a: ^Int, b: DIGIT) -> (less_than: bool) {…}
     

    bool := a < b

    internal_int_less_than_or_equal ¶

    internal_int_less_than_or_equal :: proc(a, b: ^Int) -> (less_than_or_equal: bool) {…}
     

    bool := a <= b

    internal_int_less_than_or_equal_abs ¶

    internal_int_less_than_or_equal_abs :: proc(a, b: ^Int) -> (less_than_or_equal: bool) {…}
     
    bool := |a| <= |b|
    

    Compares the magnitudes only, ignores the sign.

    internal_int_less_than_or_equal_digit ¶

    internal_int_less_than_or_equal_digit :: proc(a: ^Int, b: DIGIT) -> (less_than_or_equal: bool) {…}
     

    bool := a <= b

    internal_int_log ¶

    internal_int_log :: proc(a: ^Int, base: DIGIT) -> (res: int, err: Error) {…}
     

    Returns log_base(a). Assumes a to not be nil and have been iniialized.

    internal_int_minus_inf ¶

    internal_int_minus_inf :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to -Inf and optionally shrink it to the minimum backing size.

    internal_int_minus_one ¶

    internal_int_minus_one :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to -1 and optionally shrink it to the minimum backing size.

    internal_int_mod ¶

    internal_int_mod :: proc(remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = numerator % denominator. 0 <= remainder < denominator if denominator > 0 denominator < remainder <= 0 if denominator < 0

    Asssumes quotient, numerator and denominator to have been initialized and not to be nil.

    internal_int_mod_bits ¶

    internal_int_mod_bits :: proc(remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = numerator % (1 << bits)

    Assumes remainder and numerator both not to be nil and bits to be >= 0.

    internal_int_mod_digit ¶

    internal_int_mod_digit :: proc(numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {…}

    internal_int_mul ¶

    internal_int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    High level multiplication (handles sign).

    internal_int_mul_denom ¶

    internal_int_mul_denom :: proc(dst, x, y: ^Int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_mul_digit ¶

    internal_int_mul_digit :: proc(dest, src: ^Int, multiplier: DIGIT, allocator := context.allocator) -> (err: Error) {…}
     

    Multiply by a DIGIT.

    internal_int_mul_integer ¶

    internal_int_mul_integer :: proc(dest, a: ^Int, b: $T, allocator := context.allocator) -> (err: Error) {…}
     
    Multiply bigint `a` with int `d` and put the result in `dest`.
    

    Like internal_int_mul_digit but with an integer as the small input.

    internal_int_mulmod ¶

    internal_int_mulmod :: proc(remainder, number, multiplicand, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number * multiplicand) % modulus.

    internal_int_nan ¶

    internal_int_nan :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to NaN and optionally shrink it to the minimum backing size.

    internal_int_neg ¶

    internal_int_neg :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Set dest to -src.

    internal_int_one ¶

    internal_int_one :: proc(a: ^Int, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Set the Int to 1 and optionally shrink it to the minimum backing size.

    internal_int_or ¶

    internal_int_or :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    2's complement or, returns dest = a | b;

    internal_int_pack ¶

    internal_int_pack :: proc(a: ^Int, buf: []$T, nails: int = 0, order: Order = Order.LSB_First) -> (written: int, err: Error) {…}
     

    Based on gmp's mpz_export. See https://gmplib.org/manual/Integer-Import-and-Export.html

    buf is a pre-allocated slice of type T "words", which must be an unsigned integer of some description.

    Use `internal_int_pack_count(a, T, nails)` to calculate the necessary size.
    The library internally uses `DIGIT` as the type, which is u64 or u32 depending on the platform.
    You are of course welcome to export to []u8, []u32be, and so forth.
    After this you can use `mem.slice_data_cast` to interpret the buffer as bytes if you so choose.
    
    

    nails are the number of top bits the output "word" reserves.

    To mimic the internals of this library, this would be 4.
    
    

    To use the minimum amount of output bytes, set nails to 0 and pass a []u8. IMPORTANT: pack serializes the magnitude of an Int, that is, the output is unsigned.

    Assumes a not to be nil and to have been initialized.

    internal_int_pack_count ¶

    internal_int_pack_count :: proc(a: ^Int, $T: typeid, nails: int = 0) -> (size_needed: int) {…}
     

    Calculate the size needed for internal_int_pack.

    See https://gmplib.org/manual/Integer-Import-and-Export.html

    internal_int_pow ¶

    internal_int_pow :: proc(dest, base: ^Int, power: int, allocator := context.allocator) -> (err: Error) {…}
     

    Calculate dest = base^power using a square-multiply algorithm. Assumes dest and base not to be nil and to have been initialized.

    internal_int_pow_int ¶

    internal_int_pow_int :: proc(dest: ^Int, base, power: int, allocator := context.allocator) -> (err: Error) {…}
     

    Calculate dest = base^power. Assumes dest not to be nil and to have been initialized.

    internal_int_power_modulo ¶

    internal_int_power_modulo :: proc(res, G, X, P: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    This is a shell function that calls either the normal or Montgomery exptmod functions. Originally the call to the Montgomery code was embedded in the normal function but that wasted alot of stack space for nothing (since 99% of the time the Montgomery code would be called).

    Computes res == G**X mod P. Assumes res, G, X and P to not be nil and for G, X and P to have been initialized.

    internal_int_power_of_two ¶

    internal_int_power_of_two :: proc(a: ^Int, power: int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_powmod ¶

    internal_int_powmod :: internal_int_power_modulo
     

    This is a shell function that calls either the normal or Montgomery exptmod functions. Originally the call to the Montgomery code was embedded in the normal function but that wasted alot of stack space for nothing (since 99% of the time the Montgomery code would be called).

    Computes res == G**X mod P. Assumes res, G, X and P to not be nil and for G, X and P to have been initialized.

    internal_int_prime_frobenius_underwood ¶

    internal_int_prime_frobenius_underwood :: proc(N: ^Int, allocator := context.allocator) -> (result: bool, err: Error) {…}

    internal_int_prime_is_divisible ¶

    internal_int_prime_is_divisible :: proc(a: ^Int, allocator := context.allocator) -> (res: bool, err: Error) {…}
     

    Determines if an Integer is divisible by one of the _PRIME_TABLE primes. Returns true if it is, false if not.

    internal_int_prime_miller_rabin ¶

    internal_int_prime_miller_rabin :: proc(a, b: ^Int, allocator := context.allocator) -> (probably_prime: bool, err: Error) {…}
     

    Miller-Rabin test of "a" to the base of "b" as described in HAC pp. 139 Algorithm 4.24.

    Sets result to false if definitely composite or true if probably prime. Randomly the chance of error is no more than 1/4 and often very much lower.

    Assumes a and b not to be nil and to have been initialized.

    internal_int_prime_next_prime ¶

    internal_int_prime_next_prime :: proc(a: ^Int, trials: int, bbs_style: bool, allocator := context.allocator) -> (err: Error) {…}
     

    Finds the next prime after the number a using t trials of Miller-Rabin, in place: It sets a to the prime found. bbs_style = true means the prime must be congruent to 3 mod 4

    internal_int_prime_strong_lucas_selfridge ¶

    internal_int_prime_strong_lucas_selfridge :: proc(a: ^Int, allocator := context.allocator) -> (lucas_selfridge: bool, err: Error) {…}
     

    Strong Lucas-Selfridge test. returns true if it is a strong L-S prime, false if it is composite

    Code ported from Thomas Ray Nicely's implementation of the BPSW test at http://www.trnicely.net/misc/bpsw.html

    Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>. Released into the public domain by the author, who disclaims any legal liability arising from its use.

    The multi-line comments are made by Thomas R. Nicely and are copied verbatim. (If that name sounds familiar, he is the guy who found the fdiv bug in the Pentium CPU.)

    internal_int_random ¶

    internal_int_random :: proc(dest: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_random_digit ¶

    internal_int_random_digit :: proc() -> (res: DIGIT) {…}

    internal_int_read_from_ascii_file ¶

    internal_int_read_from_ascii_file :: proc(a: ^Int, filename: string, radix: i8 = i8(10), allocator := context.allocator) -> (err: Error) {…}
     

    Read an Int from an ASCII file.

    internal_int_root_n ¶

    internal_int_root_n :: proc(dest, src: ^Int, n: int, allocator := context.allocator) -> (err: Error) {…}
     

    Find the nth root of an Integer. Result found such that (dest)**n <= src and (dest+1)**n > src

    This algorithm uses Newton's approximation x[i+1] = x[i] - f(x[i])/f'(x[i]), which will find the root in log(n) time where each step involves a fair bit.

    Assumes dest and src not to be nil and have been initialized.

    internal_int_scale_denom ¶

    internal_int_scale_denom :: proc(dst, x, y: ^Int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_set_from_integer ¶

    internal_int_set_from_integer :: proc(dest: ^Int, src: $T, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}
     

    Helpers to set an Int to a specific value.

    internal_int_shl ¶

    internal_int_shl :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    Shift left by a certain bit count.

    internal_int_shl1 ¶

    internal_int_shl1 :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    dest = src * 2 dest = src << 1

    internal_int_shr ¶

    internal_int_shr :: proc(dest, source: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}

    internal_int_shr1 ¶

    internal_int_shr1 :: proc(dest, src: ^Int) -> (err: Error) {…}
     

    dest = src / 2 dest = src >> 1

    Assumes dest and src not to be nil and have been initialized. We make no allocations here.

    internal_int_shr_signed ¶

    internal_int_shr_signed :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    Shift right by a certain bit count with sign extension.

    internal_int_shrink ¶

    internal_int_shrink :: proc(a: ^Int) -> (err: Error) {…}
     

    Resize backing store. We don't need to pass the allocator, because the storage itself stores it.

    Assumes a not to be nil, and to have already been initialized.

    internal_int_shrmod ¶

    internal_int_shrmod :: proc(quotient, remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {…}
     

    quotient, remainder := numerator >> bits; remainder is allowed to be passed a nil, in which case mod won't be computed.

    internal_int_sqrmod ¶

    internal_int_sqrmod :: proc(remainder, number, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number * number) % modulus.

    internal_int_sqrt ¶

    internal_int_sqrt :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    This function is less generic than root_n, simpler and faster. Assumes dest and src not to be nil and to have been initialized.

    internal_int_sqrtmod_prime ¶

    internal_int_sqrtmod_prime :: proc(res, n, prime: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Tonelli-Shanks algorithm https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html

    internal_int_sub_digit ¶

    internal_int_sub_digit :: proc(dest, number: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {…}
     

    Low-level subtraction, signed. Handbook of Applied Cryptography, algorithm 14.9. dest = number - decrease. Assumes |number| > |decrease|.

    Assumptions:

    `dest`, `number` != `nil` and have been initalized.
    `dest` is large enough (number.used + 1) to fit result.
    

    internal_int_sub_signed ¶

    internal_int_sub_signed :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Low-level subtraction, signed. Handbook of Applied Cryptography, algorithm 14.9. dest = number - decrease. Assumes |number| > |decrease|.

    Assumptions:

    `dest`, `number` and `decrease` != `nil` and have been initalized.
    

    internal_int_sub_unsigned ¶

    internal_int_sub_unsigned :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Low-level subtraction, dest = number - decrease. Assumes |number| > |decrease|. Handbook of Applied Cryptography, algorithm 14.9.

    Assumptions:

    `dest`, `number` and `decrease` != `nil` and have been initalized.
    

    internal_int_submod ¶

    internal_int_submod :: proc(remainder, number, decrease, modulus: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    remainder = (number - decrease) % modulus.

    internal_int_swap ¶

    internal_int_swap :: proc(a, b: ^Int) {…}
     

    In normal code, you can also write a, b = b, a. However, that only swaps within the current scope. This helper swaps completely.

    internal_int_unpack ¶

    internal_int_unpack :: proc(a: ^Int, buf: []$T, nails: int = 0, order: Order = Order.LSB_First, allocator := context.allocator) -> (err: Error) {…}

    internal_int_write_to_ascii_file ¶

    internal_int_write_to_ascii_file :: proc(a: ^Int, filename: string, radix: i8 = i8(10), allocator := context.allocator) -> (err: Error) {…}
     

    Write an Int to an ASCII file.

    internal_int_xor ¶

    internal_int_xor :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    2's complement xor, returns dest = a ~ b;

    internal_int_zero_unused ¶

    internal_int_zero_unused :: proc(dest: ^Int, old_used: int = -1) {…}

    internal_platform_abs ¶

    internal_platform_abs :: proc(n: $T) -> $T {…}

    internal_platform_count_lsb ¶

    internal_platform_count_lsb :: proc(a: $T) -> (count: int) {…}

    internal_prime_fermat ¶

    internal_prime_fermat :: proc(a, b: ^Int, allocator := context.allocator) -> (fermat: bool, err: Error) {…}
     

    Performs one Fermat test.

    If "a" were prime then b**a == b (mod a) since the order of the multiplicative sub-group would be phi(a) = a-1. That means it would be the same as b(a mod (a-1)) == b1 == b (mod a).

    Returns true if the congruence holds, or false otherwise.

    Assumes a and b not to be nil and to have been initialized.

    internal_random_prime ¶

    internal_random_prime :: proc(a: ^Int, size_in_bits: int, trials: int, flags: bit_set[Primality_Flag; u8] = Primality_Flags{}, allocator := context.allocator) -> (err: Error) {…}
     

    Makes a truly random prime of a given size (bits),

    Flags are as follows: Blum_Blum_Shub - Make prime congruent to 3 mod 4

    Safe              - Make sure (p-1)/2 is prime as well (implies .Blum_Blum_Shub)
    Second_MSB_On     - Make the 2nd highest bit one
    
    

    This is possibly the mother of all prime generation functions, muahahahahaha!

    internal_rat_destroy ¶

    internal_rat_destroy :: proc(.. rationals: ..^Rat) {…}

    internal_rat_is_zero ¶

    internal_rat_is_zero :: proc(z: ^Rat) -> bool {…}

    internal_rat_norm ¶

    internal_rat_norm :: proc(z: ^Rat, allocator := context.allocator) -> (err: Error) {…}

    internal_rat_swap ¶

    internal_rat_swap :: proc(a, b: ^Rat) {…}

    internal_rat_to_float ¶

    internal_rat_to_float :: proc($T: typeid, z: ^Rat, allocator := context.allocator) -> (f: typeid, exact: bool, err: Error) {…}

    internal_small_pow ¶

    internal_small_pow :: proc(base: _WORD, exponent: _WORD) -> (result: _WORD) {…}

    internal_sqr ¶

    internal_sqr :: proc(dest, src: ^Int, allocator := context.allocator) -> (res: Error) {…}

    number_of_rabin_miller_trials ¶

    number_of_rabin_miller_trials :: proc(bit_size: int) -> (number_of_trials: int) {…}
     

    Returns the number of Rabin-Miller trials needed for a given bit size.

    permutations_with_repetition ¶

    permutations_with_repetition :: int_pow_int
     

    Calculate dest = base^power using a square-multiply algorithm.

    permutations_without_repetition ¶

    permutations_without_repetition :: proc(dest: ^Int, n, r: int) -> (error: Error) {…}
     

    With n items, calculate how many ways that r of them can be ordered without any repeats.

    platform_abs ¶

    platform_abs :: proc(n: $T) -> $T {…}

    platform_count_lsb ¶

    platform_count_lsb :: proc(a: $T) -> (count: int) {…}

    platform_int_is_power_of_two ¶

    platform_int_is_power_of_two :: proc(a: int) -> bool {…}

    power_of_two ¶

    power_of_two :: proc(a: ^Int, power: int, allocator := context.allocator) -> (err: Error) {…}

    radix_size ¶

    radix_size :: proc(a: ^Int, radix: i8 = i8(10), zero_terminate: bool = false, allocator := context.allocator) -> (size: int, err: Error) {…}
     

    We size for string by default.

    rat_abs ¶

    rat_abs :: proc(dst, x: ^Rat, allocator := context.allocator) -> (err: Error) {…}

    rat_add_int ¶

    rat_add_int :: proc(dst, x: ^Rat, y: ^Int, allocator := context.allocator) -> (err: Error) {…}

    rat_add_rat ¶

    rat_add_rat :: proc(dst, x, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}

    rat_compare ¶

    rat_compare :: proc(x, y: ^Rat, allocator := context.allocator) -> (comparison: int, error: Error) {…}

    rat_copy ¶

    rat_copy :: proc(dst, src: ^Rat, minimize: bool = false, allocator := context.allocator) -> (err: Error) {…}

    rat_div_int ¶

    rat_div_int :: proc(dst, x: ^Rat, y: ^Int, allocator := context.allocator) -> (err: Error) {…}

    rat_div_rat ¶

    rat_div_rat :: proc(dst, x, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}

    rat_is_even ¶

    rat_is_even :: proc(z: ^Rat, allocator := context.allocator) -> (ok: bool, err: Error) {…}

    rat_is_int ¶

    rat_is_int :: proc(z: ^Rat) -> bool {…}

    rat_is_negative ¶

    rat_is_negative :: proc(z: ^Rat, allocator := context.allocator) -> (ok: bool, err: Error) {…}

    rat_is_odd ¶

    rat_is_odd :: proc(z: ^Rat, allocator := context.allocator) -> (ok: bool, err: Error) {…}

    rat_is_positive ¶

    rat_is_positive :: proc(z: ^Rat, allocator := context.allocator) -> (ok: bool, err: Error) {…}

    rat_is_zero ¶

    rat_is_zero :: proc(z: ^Rat) -> bool {…}

    rat_mul_int ¶

    rat_mul_int :: proc(dst, x: ^Rat, y: ^Int, allocator := context.allocator) -> (err: Error) {…}

    rat_mul_rat ¶

    rat_mul_rat :: proc(dst, x, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}

    rat_neg ¶

    rat_neg :: proc(dst, x: ^Rat, allocator := context.allocator) -> (err: Error) {…}

    rat_set_digit ¶

    rat_set_digit :: proc(dst: ^Rat, a: DIGIT, allocator := context.allocator) -> (err: Error) {…}

    rat_set_f16 ¶

    rat_set_f16 :: proc(dst: ^Rat, f: f16, allocator := context.allocator) -> (err: Error) {…}

    rat_set_f32 ¶

    rat_set_f32 :: proc(dst: ^Rat, f: f32, allocator := context.allocator) -> (err: Error) {…}

    rat_set_f64 ¶

    rat_set_f64 :: proc(dst: ^Rat, f: f64, allocator := context.allocator) -> (err: Error) {…}

    rat_set_frac_digit ¶

    rat_set_frac_digit :: proc(dst: ^Rat, a, b: DIGIT, allocator := context.allocator) -> (err: Error) {…}

    rat_set_frac_int ¶

    rat_set_frac_int :: proc(dst: ^Rat, a, b: ^Int, allocator := context.allocator) -> (err: Error) {…}

    rat_set_i64 ¶

    rat_set_i64 :: proc(dst: ^Rat, x: i64, allocator := context.allocator) -> (err: Error) {…}

    rat_set_int ¶

    rat_set_int :: proc(dst: ^Rat, a: ^Int, allocator := context.allocator) -> (err: Error) {…}

    rat_set_rat ¶

    rat_set_rat :: proc(dst, x: ^Rat, allocator := context.allocator) -> (err: Error) {…}

    rat_set_u64 ¶

    rat_set_u64 :: proc(dst: ^Rat, x: u64, allocator := context.allocator) -> (err: Error) {…}

    rat_sign ¶

    rat_sign :: proc(z: ^Rat) -> Sign {…}

    rat_sqr ¶

    rat_sqr :: proc(dest, src: ^Rat) -> (err: Error) {…}

    rat_sub_int ¶

    rat_sub_int :: proc(dst, x: ^Rat, y: ^Int, allocator := context.allocator) -> (err: Error) {…}

    rat_sub_rat ¶

    rat_sub_rat :: proc(dst, x, y: ^Rat, allocator := context.allocator) -> (err: Error) {…}

    rat_swap ¶

    rat_swap :: proc(a, b: ^Rat) {…}

    rat_to_f16 ¶

    rat_to_f16 :: proc(z: ^Rat, allocator := context.allocator) -> (f: f16, exact: bool, err: Error) {…}

    rat_to_f32 ¶

    rat_to_f32 :: proc(z: ^Rat, allocator := context.allocator) -> (f: f32, exact: bool, err: Error) {…}

    rat_to_f64 ¶

    rat_to_f64 :: proc(z: ^Rat, allocator := context.allocator) -> (f: f64, exact: bool, err: Error) {…}

    shrink ¶

    shrink :: proc(a: ^Int, allocator := context.allocator) -> (err: Error) {…}
     

    Resize backing store.

    small_pow ¶

    small_pow :: proc(base: _WORD, exponent: _WORD) -> (result: _WORD) {…}

    string_to_int ¶

    string_to_int :: int_atoi
     

    Read a string [ASCII] in a given radix.

    zero_unused ¶

    zero_unused :: proc(dest: ^Int, old_used: int = -1) {…}

    Procedure Groups

    add ¶

     

    High-level addition. Handles sign.

    addmod ¶

    addmod :: proc{
    	int_addmod,
    }
    

    atoi ¶

    atoi :: proc{
    	int_atoi,
    }
    

    bit_and ¶

    bit_and :: proc{
    	int_bit_and,
    }
    

    bit_complement ¶

    bit_complement :: proc{
    	int_bit_complement,
    }
    

    bit_or ¶

    bit_or :: proc{
    	int_bit_or,
    }
    

    bit_xor ¶

    bit_xor :: proc{
    	int_bit_xor,
    }
    

    choose ¶

    choose :: proc{
    	int_choose_digit,
    }
    

    clear ¶

    clear :: proc{
    	int_clear,
    }
    

    compare_magnitude ¶

    compare_magnitude :: proc{
    	int_compare_magnitude,
    }
    

    copy ¶

    copy :: proc{
    	int_copy,
    	rat_copy,
    }
    

    destroy ¶

    destroy :: proc{
    	int_destroy,
    }
    

    double ¶

    double :: proc{
    	int_double,
    }
    

    eq_abs ¶

    eq_abs :: proc{
    	int_equals_abs,
    }
    

    equals_abs ¶

    equals_abs :: proc{
    	int_equals_abs,
    }
    

    factorial ¶

    factorial :: proc{
    	int_factorial,
    }
    

    gcd ¶

    gcd :: proc{
    	int_gcd,
    }
    

    gcd_lcm ¶

    gcd_lcm :: proc{
    	int_gcd_lcm,
    }
    

    get ¶

    get :: proc{
    	int_get,
    }
    

    get_i128 ¶

    get_i128 :: proc{
    	int_get_i128,
    }
    

    get_i32 ¶

    get_i32 :: proc{
    	int_get_i32,
    }
    

    get_i64 ¶

    get_i64 :: proc{
    	int_get_i64,
    }
    

    get_u128 ¶

    get_u128 :: proc{
    	int_get_u128,
    }
    

    get_u32 ¶

    get_u32 :: proc{
    	int_get_u32,
    }
    

    get_u64 ¶

    get_u64 :: proc{
    	int_get_u64,
    }
    

    greater_than_abs ¶

    greater_than_abs :: proc{
    	int_greater_than_abs,
    }
    

    grow ¶

    grow :: proc{
    	int_grow,
    }
    

    halve ¶

    halve :: proc{
    	int_halve,
    }
    

    inf ¶

    inf :: proc{
    	int_inf,
    }
    

    init_multi ¶

    init_multi :: proc{
    	int_init_multi,
    }
    

    internal_add_signed ¶

    internal_add_signed :: proc{
    	internal_int_add_signed,
    }
    

    internal_addmod ¶

    internal_addmod :: proc{
    	internal_int_addmod,
    }
    

    internal_and ¶

    internal_and :: proc{
    	internal_int_and,
    }
    

    internal_clear ¶

    internal_clear :: proc{
    	internal_int_clear,
    }
    

    internal_complement ¶

    internal_complement :: proc{
    	internal_int_complement,
    }
    

    internal_copy ¶

    internal_copy :: proc{
    	internal_int_copy,
    }
    

    internal_decr ¶

    internal_decr :: proc{
    	internal_int_decr,
    }
    

    internal_div ¶

    internal_div :: proc{
    	internal_int_div,
    }
    

    internal_equals_abs ¶

    internal_equals_abs :: proc{
    	internal_int_equals_abs,
    }
    

    internal_get ¶

    internal_get :: proc{
    	internal_int_get,
    }
    

    internal_get_i128 ¶

    internal_get_i128 :: proc{
    	internal_int_get_i128,
    }
    

    internal_get_i32 ¶

    internal_get_i32 :: proc{
    	internal_int_get_i32,
    }
    

    internal_get_i64 ¶

    internal_get_i64 :: proc{
    	internal_int_get_i64,
    }
    

    internal_get_u128 ¶

    internal_get_u128 :: proc{
    	internal_int_get_u128,
    }
    

    internal_get_u32 ¶

    internal_get_u32 :: proc{
    	internal_int_get_u32,
    }
    

    internal_get_u64 ¶

    internal_get_u64 :: proc{
    	internal_int_get_u64,
    }
    

    internal_grow ¶

    internal_grow :: proc{
    	internal_int_grow,
    }
    

    internal_incr ¶

    internal_incr :: proc{
    	internal_int_incr,
    }
    

    internal_inf ¶

    internal_inf :: proc{
    	internal_int_inf,
    }
    

    internal_init_multi ¶

    internal_init_multi :: proc{
    	internal_int_init_multi,
    }
    

    internal_is_even ¶

    internal_is_even :: proc{
    	internal_int_is_even,
    }
    

    internal_is_negative ¶

    internal_is_negative :: proc{
    	internal_int_is_negative,
    }
    

    internal_is_odd ¶

    internal_is_odd :: proc{
    	internal_int_is_odd,
    }
    

    internal_is_positive ¶

    internal_is_positive :: proc{
    	internal_int_is_positive,
    }
    

    internal_minus_inf ¶

    internal_minus_inf :: proc{
    	internal_int_inf,
    }
    

    internal_minus_one ¶

    internal_minus_one :: proc{
    	internal_int_minus_one,
    }
    

    internal_mulmod ¶

    internal_mulmod :: proc{
    	internal_int_mulmod,
    }
    

    internal_nan ¶

    internal_nan :: proc{
    	internal_int_nan,
    }
    

    internal_neg ¶

    internal_neg :: proc{
    	internal_int_neg,
    }
    

    internal_one ¶

    internal_one :: proc{
    	internal_int_one,
    }
    

    internal_or ¶

    internal_or :: proc{
    	internal_int_or,
    }
    

    internal_random ¶

    internal_random :: proc{
    	internal_int_random,
    }
    

    internal_root_n ¶

    internal_root_n :: proc{
    	internal_int_root_n,
    }
    

    internal_shl ¶

    internal_shl :: proc{
    	internal_int_shl,
    }
    

    internal_shr ¶

    internal_shr :: proc{
    	internal_int_shr,
    }
    

    internal_shr_signed ¶

    internal_shr_signed :: proc{
    	internal_int_shr_signed,
    }
    

    internal_shrink ¶

    internal_shrink :: proc{
    	internal_int_shrink,
    }
    

    internal_shrmod ¶

    internal_shrmod :: proc{
    	internal_int_shrmod,
    }
    

    internal_sqrmod ¶

    internal_sqrmod :: proc{
    	internal_int_sqrmod,
    }
    

    internal_sqrt ¶

    internal_sqrt :: proc{
    	internal_int_sqrt,
    }
    

    internal_submod ¶

    internal_submod :: proc{
    	internal_int_submod,
    }
    

    internal_xor ¶

    internal_xor :: proc{
    	internal_int_xor,
    }
    

    internal_zero ¶

    internal_zero :: proc{
    	internal_int_clear,
    }
    

    internal_zero_unused ¶

    internal_zero_unused :: proc{
    	internal_int_zero_unused,
    }
    

    is_initialized ¶

    is_initialized :: proc{
    	int_is_initialized,
    }
    

    is_odd ¶

    is_odd :: proc{
    	int_is_odd,
    	rat_is_odd,
    }
    

    lcm ¶

    lcm :: proc{
    	int_lcm,
    }
    

    less_than_abs ¶

    less_than_abs :: proc{
    	int_less_than_abs,
    }
    

    log ¶

    log :: proc{
    	int_log,
    	digit_log,
    }
    

    lt_abs ¶

    lt_abs :: proc{
    	int_less_than_abs,
    }
    

    minus_inf ¶

    minus_inf :: proc{
    	int_inf,
    }
    

    minus_one ¶

    minus_one :: proc{
    	int_minus_one,
    }
    

    mod_bits ¶

    mod_bits :: proc{
    	int_mod_bits,
    }
    

    mulmod ¶

    mulmod :: proc{
    	int_mulmod,
    }
    

    nan ¶

    nan :: proc{
    	int_nan,
    }
    

    neg ¶

    neg :: proc{
    	int_neg,
    	rat_neg,
    }
    

    one ¶

    one :: proc{
    	int_one,
    }
    

    random ¶

    random :: proc{
    	int_random,
    }
    

    root_n ¶

    root_n :: proc{
    	int_root_n,
    }
    

    shl ¶

    shl :: proc{
    	int_shl,
    }
    

    shl1 ¶

    shl1 :: proc{
    	int_double,
    }
    

    shr ¶

    shr :: proc{
    	int_shr,
    }
    

    shr1 ¶

    shr1 :: proc{
    	int_halve,
    }
    

    shr_signed ¶

    shr_signed :: proc{
    	int_shr_signed,
    }
    

    shrmod ¶

    shrmod :: proc{
    	int_shrmod,
    }
    

    sqr ¶

    sqr :: proc{
    	int_sqr,
    	rat_sqr,
    }
    

    sqrmod ¶

    sqrmod :: proc{
    	int_sqrmod,
    }
    

    sqrt ¶

    sqrt :: proc{
    	int_sqrt,
    }
    

    sub ¶

     

    err = sub(dest, a, b);

    submod ¶

    submod :: proc{
    	int_submod,
    }
    

    swap ¶

    swap :: proc{
    	int_swap,
    	rat_swap,
    }
    

    zero ¶

    zero :: proc{
    	int_clear,
    }
    

    Source Files

    Generation Information

    Generated with odin version dev-2025-01 (vendor "odin") Windows_amd64 @ 2025-01-20 21:11:03.475780100 +0000 UTC